Evaluate
3
Factor
3
Share
Copied to clipboard
\sqrt{\frac{\left(2+\frac{1\times 11}{2\times 10}\right)\times \frac{\left(\frac{2}{3}\right)^{2}}{5+\frac{2}{3}}}{\frac{\frac{7}{45}}{7}+\frac{1}{3}}\times 2^{4}}
Multiply \frac{1}{2} times \frac{11}{10} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{\left(2+\frac{11}{20}\right)\times \frac{\left(\frac{2}{3}\right)^{2}}{5+\frac{2}{3}}}{\frac{\frac{7}{45}}{7}+\frac{1}{3}}\times 2^{4}}
Do the multiplications in the fraction \frac{1\times 11}{2\times 10}.
\sqrt{\frac{\left(\frac{40}{20}+\frac{11}{20}\right)\times \frac{\left(\frac{2}{3}\right)^{2}}{5+\frac{2}{3}}}{\frac{\frac{7}{45}}{7}+\frac{1}{3}}\times 2^{4}}
Convert 2 to fraction \frac{40}{20}.
\sqrt{\frac{\frac{40+11}{20}\times \frac{\left(\frac{2}{3}\right)^{2}}{5+\frac{2}{3}}}{\frac{\frac{7}{45}}{7}+\frac{1}{3}}\times 2^{4}}
Since \frac{40}{20} and \frac{11}{20} have the same denominator, add them by adding their numerators.
\sqrt{\frac{\frac{51}{20}\times \frac{\left(\frac{2}{3}\right)^{2}}{5+\frac{2}{3}}}{\frac{\frac{7}{45}}{7}+\frac{1}{3}}\times 2^{4}}
Add 40 and 11 to get 51.
\sqrt{\frac{\frac{51}{20}\times \frac{\frac{4}{9}}{5+\frac{2}{3}}}{\frac{\frac{7}{45}}{7}+\frac{1}{3}}\times 2^{4}}
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
\sqrt{\frac{\frac{51}{20}\times \frac{\frac{4}{9}}{\frac{15}{3}+\frac{2}{3}}}{\frac{\frac{7}{45}}{7}+\frac{1}{3}}\times 2^{4}}
Convert 5 to fraction \frac{15}{3}.
\sqrt{\frac{\frac{51}{20}\times \frac{\frac{4}{9}}{\frac{15+2}{3}}}{\frac{\frac{7}{45}}{7}+\frac{1}{3}}\times 2^{4}}
Since \frac{15}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
\sqrt{\frac{\frac{51}{20}\times \frac{\frac{4}{9}}{\frac{17}{3}}}{\frac{\frac{7}{45}}{7}+\frac{1}{3}}\times 2^{4}}
Add 15 and 2 to get 17.
\sqrt{\frac{\frac{51}{20}\times \frac{4}{9}\times \frac{3}{17}}{\frac{\frac{7}{45}}{7}+\frac{1}{3}}\times 2^{4}}
Divide \frac{4}{9} by \frac{17}{3} by multiplying \frac{4}{9} by the reciprocal of \frac{17}{3}.
\sqrt{\frac{\frac{51}{20}\times \frac{4\times 3}{9\times 17}}{\frac{\frac{7}{45}}{7}+\frac{1}{3}}\times 2^{4}}
Multiply \frac{4}{9} times \frac{3}{17} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{\frac{51}{20}\times \frac{12}{153}}{\frac{\frac{7}{45}}{7}+\frac{1}{3}}\times 2^{4}}
Do the multiplications in the fraction \frac{4\times 3}{9\times 17}.
\sqrt{\frac{\frac{51}{20}\times \frac{4}{51}}{\frac{\frac{7}{45}}{7}+\frac{1}{3}}\times 2^{4}}
Reduce the fraction \frac{12}{153} to lowest terms by extracting and canceling out 3.
\sqrt{\frac{\frac{51\times 4}{20\times 51}}{\frac{\frac{7}{45}}{7}+\frac{1}{3}}\times 2^{4}}
Multiply \frac{51}{20} times \frac{4}{51} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{\frac{4}{20}}{\frac{\frac{7}{45}}{7}+\frac{1}{3}}\times 2^{4}}
Cancel out 51 in both numerator and denominator.
\sqrt{\frac{\frac{1}{5}}{\frac{\frac{7}{45}}{7}+\frac{1}{3}}\times 2^{4}}
Reduce the fraction \frac{4}{20} to lowest terms by extracting and canceling out 4.
\sqrt{\frac{\frac{1}{5}}{\frac{7}{45\times 7}+\frac{1}{3}}\times 2^{4}}
Express \frac{\frac{7}{45}}{7} as a single fraction.
\sqrt{\frac{\frac{1}{5}}{\frac{1}{45}+\frac{1}{3}}\times 2^{4}}
Cancel out 7 in both numerator and denominator.
\sqrt{\frac{\frac{1}{5}}{\frac{1}{45}+\frac{15}{45}}\times 2^{4}}
Least common multiple of 45 and 3 is 45. Convert \frac{1}{45} and \frac{1}{3} to fractions with denominator 45.
\sqrt{\frac{\frac{1}{5}}{\frac{1+15}{45}}\times 2^{4}}
Since \frac{1}{45} and \frac{15}{45} have the same denominator, add them by adding their numerators.
\sqrt{\frac{\frac{1}{5}}{\frac{16}{45}}\times 2^{4}}
Add 1 and 15 to get 16.
\sqrt{\frac{1}{5}\times \frac{45}{16}\times 2^{4}}
Divide \frac{1}{5} by \frac{16}{45} by multiplying \frac{1}{5} by the reciprocal of \frac{16}{45}.
\sqrt{\frac{1\times 45}{5\times 16}\times 2^{4}}
Multiply \frac{1}{5} times \frac{45}{16} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{45}{80}\times 2^{4}}
Do the multiplications in the fraction \frac{1\times 45}{5\times 16}.
\sqrt{\frac{9}{16}\times 2^{4}}
Reduce the fraction \frac{45}{80} to lowest terms by extracting and canceling out 5.
\sqrt{\frac{9}{16}\times 16}
Calculate 2 to the power of 4 and get 16.
\sqrt{9}
Cancel out 16 and 16.
3
Calculate the square root of 9 and get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}