\sqrt { ( 1 - \frac { 7 } { 12 } ) \times ( 1 - ( \frac { 9 } { 5 } - \frac { 1 } { 4 } ) \times ( 1 - \frac { 16 } { 31 } ) + ( \frac { 5 } { 8 } + \frac { 2 } { 3 } ) : \frac { 31 } { 4 } ] }
Evaluate
\frac{5}{12}\approx 0.416666667
Factor
\frac{5}{2 ^ {2} \cdot 3} = 0.4166666666666667
Share
Copied to clipboard
\sqrt{\left(\frac{12}{12}-\frac{7}{12}\right)\left(1-\left(\frac{9}{5}-\frac{1}{4}\right)\left(1-\frac{16}{31}\right)+\frac{\frac{5}{8}+\frac{2}{3}}{\frac{31}{4}}\right)}
Convert 1 to fraction \frac{12}{12}.
\sqrt{\frac{12-7}{12}\left(1-\left(\frac{9}{5}-\frac{1}{4}\right)\left(1-\frac{16}{31}\right)+\frac{\frac{5}{8}+\frac{2}{3}}{\frac{31}{4}}\right)}
Since \frac{12}{12} and \frac{7}{12} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{5}{12}\left(1-\left(\frac{9}{5}-\frac{1}{4}\right)\left(1-\frac{16}{31}\right)+\frac{\frac{5}{8}+\frac{2}{3}}{\frac{31}{4}}\right)}
Subtract 7 from 12 to get 5.
\sqrt{\frac{5}{12}\left(1-\left(\frac{36}{20}-\frac{5}{20}\right)\left(1-\frac{16}{31}\right)+\frac{\frac{5}{8}+\frac{2}{3}}{\frac{31}{4}}\right)}
Least common multiple of 5 and 4 is 20. Convert \frac{9}{5} and \frac{1}{4} to fractions with denominator 20.
\sqrt{\frac{5}{12}\left(1-\frac{36-5}{20}\left(1-\frac{16}{31}\right)+\frac{\frac{5}{8}+\frac{2}{3}}{\frac{31}{4}}\right)}
Since \frac{36}{20} and \frac{5}{20} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{5}{12}\left(1-\frac{31}{20}\left(1-\frac{16}{31}\right)+\frac{\frac{5}{8}+\frac{2}{3}}{\frac{31}{4}}\right)}
Subtract 5 from 36 to get 31.
\sqrt{\frac{5}{12}\left(1-\frac{31}{20}\left(\frac{31}{31}-\frac{16}{31}\right)+\frac{\frac{5}{8}+\frac{2}{3}}{\frac{31}{4}}\right)}
Convert 1 to fraction \frac{31}{31}.
\sqrt{\frac{5}{12}\left(1-\frac{31}{20}\times \frac{31-16}{31}+\frac{\frac{5}{8}+\frac{2}{3}}{\frac{31}{4}}\right)}
Since \frac{31}{31} and \frac{16}{31} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{5}{12}\left(1-\frac{31}{20}\times \frac{15}{31}+\frac{\frac{5}{8}+\frac{2}{3}}{\frac{31}{4}}\right)}
Subtract 16 from 31 to get 15.
\sqrt{\frac{5}{12}\left(1-\frac{31\times 15}{20\times 31}+\frac{\frac{5}{8}+\frac{2}{3}}{\frac{31}{4}}\right)}
Multiply \frac{31}{20} times \frac{15}{31} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{5}{12}\left(1-\frac{15}{20}+\frac{\frac{5}{8}+\frac{2}{3}}{\frac{31}{4}}\right)}
Cancel out 31 in both numerator and denominator.
\sqrt{\frac{5}{12}\left(1-\frac{3}{4}+\frac{\frac{5}{8}+\frac{2}{3}}{\frac{31}{4}}\right)}
Reduce the fraction \frac{15}{20} to lowest terms by extracting and canceling out 5.
\sqrt{\frac{5}{12}\left(\frac{4}{4}-\frac{3}{4}+\frac{\frac{5}{8}+\frac{2}{3}}{\frac{31}{4}}\right)}
Convert 1 to fraction \frac{4}{4}.
\sqrt{\frac{5}{12}\left(\frac{4-3}{4}+\frac{\frac{5}{8}+\frac{2}{3}}{\frac{31}{4}}\right)}
Since \frac{4}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{5}{12}\left(\frac{1}{4}+\frac{\frac{5}{8}+\frac{2}{3}}{\frac{31}{4}}\right)}
Subtract 3 from 4 to get 1.
\sqrt{\frac{5}{12}\left(\frac{1}{4}+\frac{\frac{15}{24}+\frac{16}{24}}{\frac{31}{4}}\right)}
Least common multiple of 8 and 3 is 24. Convert \frac{5}{8} and \frac{2}{3} to fractions with denominator 24.
\sqrt{\frac{5}{12}\left(\frac{1}{4}+\frac{\frac{15+16}{24}}{\frac{31}{4}}\right)}
Since \frac{15}{24} and \frac{16}{24} have the same denominator, add them by adding their numerators.
\sqrt{\frac{5}{12}\left(\frac{1}{4}+\frac{\frac{31}{24}}{\frac{31}{4}}\right)}
Add 15 and 16 to get 31.
\sqrt{\frac{5}{12}\left(\frac{1}{4}+\frac{31}{24}\times \frac{4}{31}\right)}
Divide \frac{31}{24} by \frac{31}{4} by multiplying \frac{31}{24} by the reciprocal of \frac{31}{4}.
\sqrt{\frac{5}{12}\left(\frac{1}{4}+\frac{31\times 4}{24\times 31}\right)}
Multiply \frac{31}{24} times \frac{4}{31} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{5}{12}\left(\frac{1}{4}+\frac{4}{24}\right)}
Cancel out 31 in both numerator and denominator.
\sqrt{\frac{5}{12}\left(\frac{1}{4}+\frac{1}{6}\right)}
Reduce the fraction \frac{4}{24} to lowest terms by extracting and canceling out 4.
\sqrt{\frac{5}{12}\left(\frac{3}{12}+\frac{2}{12}\right)}
Least common multiple of 4 and 6 is 12. Convert \frac{1}{4} and \frac{1}{6} to fractions with denominator 12.
\sqrt{\frac{5}{12}\times \frac{3+2}{12}}
Since \frac{3}{12} and \frac{2}{12} have the same denominator, add them by adding their numerators.
\sqrt{\frac{5}{12}\times \frac{5}{12}}
Add 3 and 2 to get 5.
\sqrt{\frac{5\times 5}{12\times 12}}
Multiply \frac{5}{12} times \frac{5}{12} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{25}{144}}
Do the multiplications in the fraction \frac{5\times 5}{12\times 12}.
\frac{5}{12}
Rewrite the square root of the division \frac{25}{144} as the division of square roots \frac{\sqrt{25}}{\sqrt{144}}. Take the square root of both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}