Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\left(1+16\right)\left(\left(\frac{1}{4}\right)^{2}-4\left(-\frac{3}{4}\right)\right)}
Calculate 4 to the power of 2 and get 16.
\sqrt{17\left(\left(\frac{1}{4}\right)^{2}-4\left(-\frac{3}{4}\right)\right)}
Add 1 and 16 to get 17.
\sqrt{17\left(\frac{1}{16}-4\left(-\frac{3}{4}\right)\right)}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\sqrt{17\left(\frac{1}{16}-\left(-3\right)\right)}
Cancel out 4 and 4.
\sqrt{17\left(\frac{1}{16}+3\right)}
The opposite of -3 is 3.
\sqrt{17\left(\frac{1}{16}+\frac{48}{16}\right)}
Convert 3 to fraction \frac{48}{16}.
\sqrt{17\times \frac{1+48}{16}}
Since \frac{1}{16} and \frac{48}{16} have the same denominator, add them by adding their numerators.
\sqrt{17\times \frac{49}{16}}
Add 1 and 48 to get 49.
\sqrt{\frac{17\times 49}{16}}
Express 17\times \frac{49}{16} as a single fraction.
\sqrt{\frac{833}{16}}
Multiply 17 and 49 to get 833.
\frac{\sqrt{833}}{\sqrt{16}}
Rewrite the square root of the division \sqrt{\frac{833}{16}} as the division of square roots \frac{\sqrt{833}}{\sqrt{16}}.
\frac{7\sqrt{17}}{\sqrt{16}}
Factor 833=7^{2}\times 17. Rewrite the square root of the product \sqrt{7^{2}\times 17} as the product of square roots \sqrt{7^{2}}\sqrt{17}. Take the square root of 7^{2}.
\frac{7\sqrt{17}}{4}
Calculate the square root of 16 and get 4.