\sqrt { ( 1 + 4 ^ { 2 } ) [ ( \frac { 1 } { 4 } ) ^ { 2 } - 4 ( - \frac { 3 } { 4 } ) } ]
Evaluate
\frac{7\sqrt{17}}{4}\approx 7.215434845
Share
Copied to clipboard
\sqrt{\left(1+16\right)\left(\left(\frac{1}{4}\right)^{2}-4\left(-\frac{3}{4}\right)\right)}
Calculate 4 to the power of 2 and get 16.
\sqrt{17\left(\left(\frac{1}{4}\right)^{2}-4\left(-\frac{3}{4}\right)\right)}
Add 1 and 16 to get 17.
\sqrt{17\left(\frac{1}{16}-4\left(-\frac{3}{4}\right)\right)}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\sqrt{17\left(\frac{1}{16}-\left(-3\right)\right)}
Cancel out 4 and 4.
\sqrt{17\left(\frac{1}{16}+3\right)}
The opposite of -3 is 3.
\sqrt{17\left(\frac{1}{16}+\frac{48}{16}\right)}
Convert 3 to fraction \frac{48}{16}.
\sqrt{17\times \frac{1+48}{16}}
Since \frac{1}{16} and \frac{48}{16} have the same denominator, add them by adding their numerators.
\sqrt{17\times \frac{49}{16}}
Add 1 and 48 to get 49.
\sqrt{\frac{17\times 49}{16}}
Express 17\times \frac{49}{16} as a single fraction.
\sqrt{\frac{833}{16}}
Multiply 17 and 49 to get 833.
\frac{\sqrt{833}}{\sqrt{16}}
Rewrite the square root of the division \sqrt{\frac{833}{16}} as the division of square roots \frac{\sqrt{833}}{\sqrt{16}}.
\frac{7\sqrt{17}}{\sqrt{16}}
Factor 833=7^{2}\times 17. Rewrite the square root of the product \sqrt{7^{2}\times 17} as the product of square roots \sqrt{7^{2}}\sqrt{17}. Take the square root of 7^{2}.
\frac{7\sqrt{17}}{4}
Calculate the square root of 16 and get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}