Evaluate
\frac{2\sqrt{21}}{7}\approx 1.309307341
Share
Copied to clipboard
\sqrt{\left(\frac{3}{3}+\frac{2}{3}\right)\left(1-\frac{2}{5}\right)+\left(1-\frac{3}{7}\right)\left(\frac{3}{4}+\frac{1}{2}\right)}
Convert 1 to fraction \frac{3}{3}.
\sqrt{\frac{3+2}{3}\left(1-\frac{2}{5}\right)+\left(1-\frac{3}{7}\right)\left(\frac{3}{4}+\frac{1}{2}\right)}
Since \frac{3}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
\sqrt{\frac{5}{3}\left(1-\frac{2}{5}\right)+\left(1-\frac{3}{7}\right)\left(\frac{3}{4}+\frac{1}{2}\right)}
Add 3 and 2 to get 5.
\sqrt{\frac{5}{3}\left(\frac{5}{5}-\frac{2}{5}\right)+\left(1-\frac{3}{7}\right)\left(\frac{3}{4}+\frac{1}{2}\right)}
Convert 1 to fraction \frac{5}{5}.
\sqrt{\frac{5}{3}\times \frac{5-2}{5}+\left(1-\frac{3}{7}\right)\left(\frac{3}{4}+\frac{1}{2}\right)}
Since \frac{5}{5} and \frac{2}{5} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{5}{3}\times \frac{3}{5}+\left(1-\frac{3}{7}\right)\left(\frac{3}{4}+\frac{1}{2}\right)}
Subtract 2 from 5 to get 3.
\sqrt{1+\left(1-\frac{3}{7}\right)\left(\frac{3}{4}+\frac{1}{2}\right)}
Cancel out \frac{5}{3} and its reciprocal \frac{3}{5}.
\sqrt{1+\left(\frac{7}{7}-\frac{3}{7}\right)\left(\frac{3}{4}+\frac{1}{2}\right)}
Convert 1 to fraction \frac{7}{7}.
\sqrt{1+\frac{7-3}{7}\left(\frac{3}{4}+\frac{1}{2}\right)}
Since \frac{7}{7} and \frac{3}{7} have the same denominator, subtract them by subtracting their numerators.
\sqrt{1+\frac{4}{7}\left(\frac{3}{4}+\frac{1}{2}\right)}
Subtract 3 from 7 to get 4.
\sqrt{1+\frac{4}{7}\left(\frac{3}{4}+\frac{2}{4}\right)}
Least common multiple of 4 and 2 is 4. Convert \frac{3}{4} and \frac{1}{2} to fractions with denominator 4.
\sqrt{1+\frac{4}{7}\times \frac{3+2}{4}}
Since \frac{3}{4} and \frac{2}{4} have the same denominator, add them by adding their numerators.
\sqrt{1+\frac{4}{7}\times \frac{5}{4}}
Add 3 and 2 to get 5.
\sqrt{1+\frac{4\times 5}{7\times 4}}
Multiply \frac{4}{7} times \frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
\sqrt{1+\frac{5}{7}}
Cancel out 4 in both numerator and denominator.
\sqrt{\frac{7}{7}+\frac{5}{7}}
Convert 1 to fraction \frac{7}{7}.
\sqrt{\frac{7+5}{7}}
Since \frac{7}{7} and \frac{5}{7} have the same denominator, add them by adding their numerators.
\sqrt{\frac{12}{7}}
Add 7 and 5 to get 12.
\frac{\sqrt{12}}{\sqrt{7}}
Rewrite the square root of the division \sqrt{\frac{12}{7}} as the division of square roots \frac{\sqrt{12}}{\sqrt{7}}.
\frac{2\sqrt{3}}{\sqrt{7}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{2\sqrt{3}\sqrt{7}}{\left(\sqrt{7}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{3}}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{2\sqrt{3}\sqrt{7}}{7}
The square of \sqrt{7} is 7.
\frac{2\sqrt{21}}{7}
To multiply \sqrt{3} and \sqrt{7}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}