Evaluate
-5
Factor
-5
Share
Copied to clipboard
\sqrt{36}+\left(-2\sqrt{3}\right)^{2}-\sqrt{3}\left(2\sqrt{48}-\sqrt{\frac{1}{3}}\right)
Calculate -6 to the power of 2 and get 36.
6+\left(-2\sqrt{3}\right)^{2}-\sqrt{3}\left(2\sqrt{48}-\sqrt{\frac{1}{3}}\right)
Calculate the square root of 36 and get 6.
6+\left(-2\right)^{2}\left(\sqrt{3}\right)^{2}-\sqrt{3}\left(2\sqrt{48}-\sqrt{\frac{1}{3}}\right)
Expand \left(-2\sqrt{3}\right)^{2}.
6+4\left(\sqrt{3}\right)^{2}-\sqrt{3}\left(2\sqrt{48}-\sqrt{\frac{1}{3}}\right)
Calculate -2 to the power of 2 and get 4.
6+4\times 3-\sqrt{3}\left(2\sqrt{48}-\sqrt{\frac{1}{3}}\right)
The square of \sqrt{3} is 3.
6+12-\sqrt{3}\left(2\sqrt{48}-\sqrt{\frac{1}{3}}\right)
Multiply 4 and 3 to get 12.
18-\sqrt{3}\left(2\sqrt{48}-\sqrt{\frac{1}{3}}\right)
Add 6 and 12 to get 18.
18-\sqrt{3}\left(2\times 4\sqrt{3}-\sqrt{\frac{1}{3}}\right)
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
18-\sqrt{3}\left(8\sqrt{3}-\sqrt{\frac{1}{3}}\right)
Multiply 2 and 4 to get 8.
18-\sqrt{3}\left(8\sqrt{3}-\frac{\sqrt{1}}{\sqrt{3}}\right)
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
18-\sqrt{3}\left(8\sqrt{3}-\frac{1}{\sqrt{3}}\right)
Calculate the square root of 1 and get 1.
18-\sqrt{3}\left(8\sqrt{3}-\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
18-\sqrt{3}\left(8\sqrt{3}-\frac{\sqrt{3}}{3}\right)
The square of \sqrt{3} is 3.
18-\sqrt{3}\left(\frac{3\times 8\sqrt{3}}{3}-\frac{\sqrt{3}}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 8\sqrt{3} times \frac{3}{3}.
18-\sqrt{3}\times \frac{3\times 8\sqrt{3}-\sqrt{3}}{3}
Since \frac{3\times 8\sqrt{3}}{3} and \frac{\sqrt{3}}{3} have the same denominator, subtract them by subtracting their numerators.
18-\sqrt{3}\times \frac{24\sqrt{3}-\sqrt{3}}{3}
Do the multiplications in 3\times 8\sqrt{3}-\sqrt{3}.
18-\sqrt{3}\times \frac{23\sqrt{3}}{3}
Do the calculations in 24\sqrt{3}-\sqrt{3}.
18-\frac{\sqrt{3}\times 23\sqrt{3}}{3}
Express \sqrt{3}\times \frac{23\sqrt{3}}{3} as a single fraction.
18-\frac{3\times 23}{3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
18-23
Cancel out 3 and 3.
-5
Subtract 23 from 18 to get -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}