Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{36}+\sqrt{18}-\frac{2\sqrt{48}-\frac{\sqrt{6}}{3}}{\sqrt{3}}
Calculate -6 to the power of 2 and get 36.
6+\sqrt{18}-\frac{2\sqrt{48}-\frac{\sqrt{6}}{3}}{\sqrt{3}}
Calculate the square root of 36 and get 6.
6+3\sqrt{2}-\frac{2\sqrt{48}-\frac{\sqrt{6}}{3}}{\sqrt{3}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
6+3\sqrt{2}-\frac{2\times 4\sqrt{3}-\frac{\sqrt{6}}{3}}{\sqrt{3}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
6+3\sqrt{2}-\frac{8\sqrt{3}-\frac{\sqrt{6}}{3}}{\sqrt{3}}
Multiply 2 and 4 to get 8.
6+3\sqrt{2}-\frac{\frac{3\times 8\sqrt{3}}{3}-\frac{\sqrt{6}}{3}}{\sqrt{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 8\sqrt{3} times \frac{3}{3}.
6+3\sqrt{2}-\frac{\frac{3\times 8\sqrt{3}-\sqrt{6}}{3}}{\sqrt{3}}
Since \frac{3\times 8\sqrt{3}}{3} and \frac{\sqrt{6}}{3} have the same denominator, subtract them by subtracting their numerators.
6+3\sqrt{2}-\frac{\frac{24\sqrt{3}-\sqrt{6}}{3}}{\sqrt{3}}
Do the multiplications in 3\times 8\sqrt{3}-\sqrt{6}.
6+3\sqrt{2}-\frac{24\sqrt{3}-\sqrt{6}}{3\sqrt{3}}
Express \frac{\frac{24\sqrt{3}-\sqrt{6}}{3}}{\sqrt{3}} as a single fraction.
6+3\sqrt{2}-\frac{\left(24\sqrt{3}-\sqrt{6}\right)\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{24\sqrt{3}-\sqrt{6}}{3\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
6+3\sqrt{2}-\frac{\left(24\sqrt{3}-\sqrt{6}\right)\sqrt{3}}{3\times 3}
The square of \sqrt{3} is 3.
6+3\sqrt{2}-\frac{\left(24\sqrt{3}-\sqrt{6}\right)\sqrt{3}}{9}
Multiply 3 and 3 to get 9.
\frac{9\left(6+3\sqrt{2}\right)}{9}-\frac{\left(24\sqrt{3}-\sqrt{6}\right)\sqrt{3}}{9}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6+3\sqrt{2} times \frac{9}{9}.
\frac{9\left(6+3\sqrt{2}\right)-\left(24\sqrt{3}-\sqrt{6}\right)\sqrt{3}}{9}
Since \frac{9\left(6+3\sqrt{2}\right)}{9} and \frac{\left(24\sqrt{3}-\sqrt{6}\right)\sqrt{3}}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{54+27\sqrt{2}-72+3\sqrt{2}}{9}
Do the multiplications in 9\left(6+3\sqrt{2}\right)-\left(24\sqrt{3}-\sqrt{6}\right)\sqrt{3}.
\frac{-18+30\sqrt{2}}{9}
Do the calculations in 54+27\sqrt{2}-72+3\sqrt{2}.