Evaluate
\frac{10\sqrt{2}}{3}-2\approx 2.714045208
Factor
\frac{2 {(5 \sqrt{2} - 3)}}{3} = 2.714045207910317
Share
Copied to clipboard
\sqrt{36}+\sqrt{18}-\frac{2\sqrt{48}-\frac{\sqrt{6}}{3}}{\sqrt{3}}
Calculate -6 to the power of 2 and get 36.
6+\sqrt{18}-\frac{2\sqrt{48}-\frac{\sqrt{6}}{3}}{\sqrt{3}}
Calculate the square root of 36 and get 6.
6+3\sqrt{2}-\frac{2\sqrt{48}-\frac{\sqrt{6}}{3}}{\sqrt{3}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
6+3\sqrt{2}-\frac{2\times 4\sqrt{3}-\frac{\sqrt{6}}{3}}{\sqrt{3}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
6+3\sqrt{2}-\frac{8\sqrt{3}-\frac{\sqrt{6}}{3}}{\sqrt{3}}
Multiply 2 and 4 to get 8.
6+3\sqrt{2}-\frac{\frac{3\times 8\sqrt{3}}{3}-\frac{\sqrt{6}}{3}}{\sqrt{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 8\sqrt{3} times \frac{3}{3}.
6+3\sqrt{2}-\frac{\frac{3\times 8\sqrt{3}-\sqrt{6}}{3}}{\sqrt{3}}
Since \frac{3\times 8\sqrt{3}}{3} and \frac{\sqrt{6}}{3} have the same denominator, subtract them by subtracting their numerators.
6+3\sqrt{2}-\frac{\frac{24\sqrt{3}-\sqrt{6}}{3}}{\sqrt{3}}
Do the multiplications in 3\times 8\sqrt{3}-\sqrt{6}.
6+3\sqrt{2}-\frac{24\sqrt{3}-\sqrt{6}}{3\sqrt{3}}
Express \frac{\frac{24\sqrt{3}-\sqrt{6}}{3}}{\sqrt{3}} as a single fraction.
6+3\sqrt{2}-\frac{\left(24\sqrt{3}-\sqrt{6}\right)\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{24\sqrt{3}-\sqrt{6}}{3\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
6+3\sqrt{2}-\frac{\left(24\sqrt{3}-\sqrt{6}\right)\sqrt{3}}{3\times 3}
The square of \sqrt{3} is 3.
6+3\sqrt{2}-\frac{\left(24\sqrt{3}-\sqrt{6}\right)\sqrt{3}}{9}
Multiply 3 and 3 to get 9.
\frac{9\left(6+3\sqrt{2}\right)}{9}-\frac{\left(24\sqrt{3}-\sqrt{6}\right)\sqrt{3}}{9}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6+3\sqrt{2} times \frac{9}{9}.
\frac{9\left(6+3\sqrt{2}\right)-\left(24\sqrt{3}-\sqrt{6}\right)\sqrt{3}}{9}
Since \frac{9\left(6+3\sqrt{2}\right)}{9} and \frac{\left(24\sqrt{3}-\sqrt{6}\right)\sqrt{3}}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{54+27\sqrt{2}-72+3\sqrt{2}}{9}
Do the multiplications in 9\left(6+3\sqrt{2}\right)-\left(24\sqrt{3}-\sqrt{6}\right)\sqrt{3}.
\frac{-18+30\sqrt{2}}{9}
Do the calculations in 54+27\sqrt{2}-72+3\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}