Solve for t
t=-6
Share
Copied to clipboard
\left(\sqrt{\left(-5\right)^{2}+\left(-6\right)^{2}+\left(t-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(-4\right)^{2}+\left(-3\right)^{2}+\left(t-4\right)^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{25+\left(-6\right)^{2}+\left(t-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(-4\right)^{2}+\left(-3\right)^{2}+\left(t-4\right)^{2}}\right)^{2}
Calculate -5 to the power of 2 and get 25.
\left(\sqrt{25+36+\left(t-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(-4\right)^{2}+\left(-3\right)^{2}+\left(t-4\right)^{2}}\right)^{2}
Calculate -6 to the power of 2 and get 36.
\left(\sqrt{61+\left(t-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(-4\right)^{2}+\left(-3\right)^{2}+\left(t-4\right)^{2}}\right)^{2}
Add 25 and 36 to get 61.
\left(\sqrt{61+t^{2}-4t+4}\right)^{2}=\left(\sqrt{\left(-4\right)^{2}+\left(-3\right)^{2}+\left(t-4\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-2\right)^{2}.
\left(\sqrt{65+t^{2}-4t}\right)^{2}=\left(\sqrt{\left(-4\right)^{2}+\left(-3\right)^{2}+\left(t-4\right)^{2}}\right)^{2}
Add 61 and 4 to get 65.
65+t^{2}-4t=\left(\sqrt{\left(-4\right)^{2}+\left(-3\right)^{2}+\left(t-4\right)^{2}}\right)^{2}
Calculate \sqrt{65+t^{2}-4t} to the power of 2 and get 65+t^{2}-4t.
65+t^{2}-4t=\left(\sqrt{16+\left(-3\right)^{2}+\left(t-4\right)^{2}}\right)^{2}
Calculate -4 to the power of 2 and get 16.
65+t^{2}-4t=\left(\sqrt{16+9+\left(t-4\right)^{2}}\right)^{2}
Calculate -3 to the power of 2 and get 9.
65+t^{2}-4t=\left(\sqrt{25+\left(t-4\right)^{2}}\right)^{2}
Add 16 and 9 to get 25.
65+t^{2}-4t=\left(\sqrt{25+t^{2}-8t+16}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-4\right)^{2}.
65+t^{2}-4t=\left(\sqrt{41+t^{2}-8t}\right)^{2}
Add 25 and 16 to get 41.
65+t^{2}-4t=41+t^{2}-8t
Calculate \sqrt{41+t^{2}-8t} to the power of 2 and get 41+t^{2}-8t.
65+t^{2}-4t-t^{2}=41-8t
Subtract t^{2} from both sides.
65-4t=41-8t
Combine t^{2} and -t^{2} to get 0.
65-4t+8t=41
Add 8t to both sides.
65+4t=41
Combine -4t and 8t to get 4t.
4t=41-65
Subtract 65 from both sides.
4t=-24
Subtract 65 from 41 to get -24.
t=\frac{-24}{4}
Divide both sides by 4.
t=-6
Divide -24 by 4 to get -6.
\sqrt{\left(-5\right)^{2}+\left(-6\right)^{2}+\left(-6-2\right)^{2}}=\sqrt{\left(-4\right)^{2}+\left(-3\right)^{2}+\left(-6-4\right)^{2}}
Substitute -6 for t in the equation \sqrt{\left(-5\right)^{2}+\left(-6\right)^{2}+\left(t-2\right)^{2}}=\sqrt{\left(-4\right)^{2}+\left(-3\right)^{2}+\left(t-4\right)^{2}}.
5\times 5^{\frac{1}{2}}=5\times 5^{\frac{1}{2}}
Simplify. The value t=-6 satisfies the equation.
t=-6
Equation \sqrt{\left(t-2\right)^{2}+61}=\sqrt{\left(t-4\right)^{2}+25} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}