Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{\left(-5\right)^{2}+\left(-6\right)^{2}+\left(t-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(-4\right)^{2}+\left(-3\right)^{2}+\left(t-4\right)^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{25+\left(-6\right)^{2}+\left(t-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(-4\right)^{2}+\left(-3\right)^{2}+\left(t-4\right)^{2}}\right)^{2}
Calculate -5 to the power of 2 and get 25.
\left(\sqrt{25+36+\left(t-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(-4\right)^{2}+\left(-3\right)^{2}+\left(t-4\right)^{2}}\right)^{2}
Calculate -6 to the power of 2 and get 36.
\left(\sqrt{61+\left(t-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(-4\right)^{2}+\left(-3\right)^{2}+\left(t-4\right)^{2}}\right)^{2}
Add 25 and 36 to get 61.
\left(\sqrt{61+t^{2}-4t+4}\right)^{2}=\left(\sqrt{\left(-4\right)^{2}+\left(-3\right)^{2}+\left(t-4\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-2\right)^{2}.
\left(\sqrt{65+t^{2}-4t}\right)^{2}=\left(\sqrt{\left(-4\right)^{2}+\left(-3\right)^{2}+\left(t-4\right)^{2}}\right)^{2}
Add 61 and 4 to get 65.
65+t^{2}-4t=\left(\sqrt{\left(-4\right)^{2}+\left(-3\right)^{2}+\left(t-4\right)^{2}}\right)^{2}
Calculate \sqrt{65+t^{2}-4t} to the power of 2 and get 65+t^{2}-4t.
65+t^{2}-4t=\left(\sqrt{16+\left(-3\right)^{2}+\left(t-4\right)^{2}}\right)^{2}
Calculate -4 to the power of 2 and get 16.
65+t^{2}-4t=\left(\sqrt{16+9+\left(t-4\right)^{2}}\right)^{2}
Calculate -3 to the power of 2 and get 9.
65+t^{2}-4t=\left(\sqrt{25+\left(t-4\right)^{2}}\right)^{2}
Add 16 and 9 to get 25.
65+t^{2}-4t=\left(\sqrt{25+t^{2}-8t+16}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-4\right)^{2}.
65+t^{2}-4t=\left(\sqrt{41+t^{2}-8t}\right)^{2}
Add 25 and 16 to get 41.
65+t^{2}-4t=41+t^{2}-8t
Calculate \sqrt{41+t^{2}-8t} to the power of 2 and get 41+t^{2}-8t.
65+t^{2}-4t-t^{2}=41-8t
Subtract t^{2} from both sides.
65-4t=41-8t
Combine t^{2} and -t^{2} to get 0.
65-4t+8t=41
Add 8t to both sides.
65+4t=41
Combine -4t and 8t to get 4t.
4t=41-65
Subtract 65 from both sides.
4t=-24
Subtract 65 from 41 to get -24.
t=\frac{-24}{4}
Divide both sides by 4.
t=-6
Divide -24 by 4 to get -6.
\sqrt{\left(-5\right)^{2}+\left(-6\right)^{2}+\left(-6-2\right)^{2}}=\sqrt{\left(-4\right)^{2}+\left(-3\right)^{2}+\left(-6-4\right)^{2}}
Substitute -6 for t in the equation \sqrt{\left(-5\right)^{2}+\left(-6\right)^{2}+\left(t-2\right)^{2}}=\sqrt{\left(-4\right)^{2}+\left(-3\right)^{2}+\left(t-4\right)^{2}}.
5\times 5^{\frac{1}{2}}=5\times 5^{\frac{1}{2}}
Simplify. The value t=-6 satisfies the equation.
t=-6
Equation \sqrt{\left(t-2\right)^{2}+61}=\sqrt{\left(t-4\right)^{2}+25} has a unique solution.