Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{\left(-4-x\right)^{2}+289-100}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{16+8x+x^{2}+289-100}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-4-x\right)^{2}.
\left(\sqrt{305+8x+x^{2}-100}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}}\right)^{2}
Add 16 and 289 to get 305.
\left(\sqrt{205+8x+x^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}}\right)^{2}
Subtract 100 from 305 to get 205.
205+8x+x^{2}=\left(\sqrt{\left(3-x\right)^{2}}\right)^{2}
Calculate \sqrt{205+8x+x^{2}} to the power of 2 and get 205+8x+x^{2}.
205+8x+x^{2}=\left(\sqrt{9-6x+x^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-x\right)^{2}.
205+8x+x^{2}=9-6x+x^{2}
Calculate \sqrt{9-6x+x^{2}} to the power of 2 and get 9-6x+x^{2}.
205+8x+x^{2}+6x=9+x^{2}
Add 6x to both sides.
205+14x+x^{2}=9+x^{2}
Combine 8x and 6x to get 14x.
205+14x+x^{2}-x^{2}=9
Subtract x^{2} from both sides.
205+14x=9
Combine x^{2} and -x^{2} to get 0.
14x=9-205
Subtract 205 from both sides.
14x=-196
Subtract 205 from 9 to get -196.
x=\frac{-196}{14}
Divide both sides by 14.
x=-14
Divide -196 by 14 to get -14.
\sqrt{\left(-4-\left(-14\right)\right)^{2}+289-100}=\sqrt{\left(3-\left(-14\right)\right)^{2}}
Substitute -14 for x in the equation \sqrt{\left(-4-x\right)^{2}+289-100}=\sqrt{\left(3-x\right)^{2}}.
17=17
Simplify. The value x=-14 satisfies the equation.
x=-14
Equation \sqrt{\left(-x-4\right)^{2}+189}=\sqrt{\left(3-x\right)^{2}} has a unique solution.