Solve for x
x=-14
Graph
Share
Copied to clipboard
\left(\sqrt{\left(-4-x\right)^{2}+289-100}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{16+8x+x^{2}+289-100}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-4-x\right)^{2}.
\left(\sqrt{305+8x+x^{2}-100}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}}\right)^{2}
Add 16 and 289 to get 305.
\left(\sqrt{205+8x+x^{2}}\right)^{2}=\left(\sqrt{\left(3-x\right)^{2}}\right)^{2}
Subtract 100 from 305 to get 205.
205+8x+x^{2}=\left(\sqrt{\left(3-x\right)^{2}}\right)^{2}
Calculate \sqrt{205+8x+x^{2}} to the power of 2 and get 205+8x+x^{2}.
205+8x+x^{2}=\left(\sqrt{9-6x+x^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-x\right)^{2}.
205+8x+x^{2}=9-6x+x^{2}
Calculate \sqrt{9-6x+x^{2}} to the power of 2 and get 9-6x+x^{2}.
205+8x+x^{2}+6x=9+x^{2}
Add 6x to both sides.
205+14x+x^{2}=9+x^{2}
Combine 8x and 6x to get 14x.
205+14x+x^{2}-x^{2}=9
Subtract x^{2} from both sides.
205+14x=9
Combine x^{2} and -x^{2} to get 0.
14x=9-205
Subtract 205 from both sides.
14x=-196
Subtract 205 from 9 to get -196.
x=\frac{-196}{14}
Divide both sides by 14.
x=-14
Divide -196 by 14 to get -14.
\sqrt{\left(-4-\left(-14\right)\right)^{2}+289-100}=\sqrt{\left(3-\left(-14\right)\right)^{2}}
Substitute -14 for x in the equation \sqrt{\left(-4-x\right)^{2}+289-100}=\sqrt{\left(3-x\right)^{2}}.
17=17
Simplify. The value x=-14 satisfies the equation.
x=-14
Equation \sqrt{\left(-x-4\right)^{2}+189}=\sqrt{\left(3-x\right)^{2}} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}