Evaluate
\frac{\sqrt{109}}{15}\approx 0.696020434
Share
Copied to clipboard
\sqrt{\frac{1}{25}+\left(\frac{2}{3}\right)^{2}}
Calculate -\frac{1}{5} to the power of 2 and get \frac{1}{25}.
\sqrt{\frac{1}{25}+\frac{4}{9}}
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
\sqrt{\frac{9}{225}+\frac{100}{225}}
Least common multiple of 25 and 9 is 225. Convert \frac{1}{25} and \frac{4}{9} to fractions with denominator 225.
\sqrt{\frac{9+100}{225}}
Since \frac{9}{225} and \frac{100}{225} have the same denominator, add them by adding their numerators.
\sqrt{\frac{109}{225}}
Add 9 and 100 to get 109.
\frac{\sqrt{109}}{\sqrt{225}}
Rewrite the square root of the division \sqrt{\frac{109}{225}} as the division of square roots \frac{\sqrt{109}}{\sqrt{225}}.
\frac{\sqrt{109}}{15}
Calculate the square root of 225 and get 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}