Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\left(-\frac{13}{2}\right)^{2}+\left(\frac{11}{2}-1\right)^{2}}
Subtract 6 from -\frac{1}{2} to get -\frac{13}{2}.
\sqrt{\frac{169}{4}+\left(\frac{11}{2}-1\right)^{2}}
Calculate -\frac{13}{2} to the power of 2 and get \frac{169}{4}.
\sqrt{\frac{169}{4}+\left(\frac{9}{2}\right)^{2}}
Subtract 1 from \frac{11}{2} to get \frac{9}{2}.
\sqrt{\frac{169}{4}+\frac{81}{4}}
Calculate \frac{9}{2} to the power of 2 and get \frac{81}{4}.
\sqrt{\frac{125}{2}}
Add \frac{169}{4} and \frac{81}{4} to get \frac{125}{2}.
\frac{\sqrt{125}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{125}{2}} as the division of square roots \frac{\sqrt{125}}{\sqrt{2}}.
\frac{5\sqrt{5}}{\sqrt{2}}
Factor 125=5^{2}\times 5. Rewrite the square root of the product \sqrt{5^{2}\times 5} as the product of square roots \sqrt{5^{2}}\sqrt{5}. Take the square root of 5^{2}.
\frac{5\sqrt{5}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{5\sqrt{5}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{5\sqrt{5}\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{5\sqrt{10}}{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.