Evaluate
\frac{\sqrt{2}}{2}\approx 0.707106781
Share
Copied to clipboard
\sqrt{\left(-\left(-\frac{1}{2}\right)\right)^{2}+\left(-\frac{3}{2}\right)^{2}-2}
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
\sqrt{\left(\frac{1}{2}\right)^{2}+\left(-\frac{3}{2}\right)^{2}-2}
The opposite of -\frac{1}{2} is \frac{1}{2}.
\sqrt{\frac{1}{4}+\left(-\frac{3}{2}\right)^{2}-2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\sqrt{\frac{1}{4}+\frac{9}{4}-2}
Calculate -\frac{3}{2} to the power of 2 and get \frac{9}{4}.
\sqrt{\frac{5}{2}-2}
Add \frac{1}{4} and \frac{9}{4} to get \frac{5}{2}.
\sqrt{\frac{1}{2}}
Subtract 2 from \frac{5}{2} to get \frac{1}{2}.
\frac{\sqrt{1}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
\frac{1}{\sqrt{2}}
Calculate the square root of 1 and get 1.
\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{2}}{2}
The square of \sqrt{2} is 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}