Evaluate
\frac{3}{2}=1.5
Factor
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
\sqrt{\frac{21}{24}-\frac{2}{24}+\frac{2}{6}-\left(\frac{9}{8}-\left(\frac{45}{12}-\left(\frac{15}{28}+\frac{11}{4}-\frac{2}{7}\right)\right)\right)+\frac{4}{3}+\frac{15}{4}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Least common multiple of 8 and 12 is 24. Convert \frac{7}{8} and \frac{1}{12} to fractions with denominator 24.
\sqrt{\frac{21-2}{24}+\frac{2}{6}-\left(\frac{9}{8}-\left(\frac{45}{12}-\left(\frac{15}{28}+\frac{11}{4}-\frac{2}{7}\right)\right)\right)+\frac{4}{3}+\frac{15}{4}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Since \frac{21}{24} and \frac{2}{24} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{19}{24}+\frac{2}{6}-\left(\frac{9}{8}-\left(\frac{45}{12}-\left(\frac{15}{28}+\frac{11}{4}-\frac{2}{7}\right)\right)\right)+\frac{4}{3}+\frac{15}{4}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Subtract 2 from 21 to get 19.
\sqrt{\frac{19}{24}+\frac{1}{3}-\left(\frac{9}{8}-\left(\frac{45}{12}-\left(\frac{15}{28}+\frac{11}{4}-\frac{2}{7}\right)\right)\right)+\frac{4}{3}+\frac{15}{4}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\sqrt{\frac{19}{24}+\frac{8}{24}-\left(\frac{9}{8}-\left(\frac{45}{12}-\left(\frac{15}{28}+\frac{11}{4}-\frac{2}{7}\right)\right)\right)+\frac{4}{3}+\frac{15}{4}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Least common multiple of 24 and 3 is 24. Convert \frac{19}{24} and \frac{1}{3} to fractions with denominator 24.
\sqrt{\frac{19+8}{24}-\left(\frac{9}{8}-\left(\frac{45}{12}-\left(\frac{15}{28}+\frac{11}{4}-\frac{2}{7}\right)\right)\right)+\frac{4}{3}+\frac{15}{4}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Since \frac{19}{24} and \frac{8}{24} have the same denominator, add them by adding their numerators.
\sqrt{\frac{27}{24}-\left(\frac{9}{8}-\left(\frac{45}{12}-\left(\frac{15}{28}+\frac{11}{4}-\frac{2}{7}\right)\right)\right)+\frac{4}{3}+\frac{15}{4}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Add 19 and 8 to get 27.
\sqrt{\frac{9}{8}-\left(\frac{9}{8}-\left(\frac{45}{12}-\left(\frac{15}{28}+\frac{11}{4}-\frac{2}{7}\right)\right)\right)+\frac{4}{3}+\frac{15}{4}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Reduce the fraction \frac{27}{24} to lowest terms by extracting and canceling out 3.
\sqrt{\frac{9}{8}-\left(\frac{9}{8}-\left(\frac{15}{4}-\left(\frac{15}{28}+\frac{11}{4}-\frac{2}{7}\right)\right)\right)+\frac{4}{3}+\frac{15}{4}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Reduce the fraction \frac{45}{12} to lowest terms by extracting and canceling out 3.
\sqrt{\frac{9}{8}-\left(\frac{9}{8}-\left(\frac{15}{4}-\left(\frac{15}{28}+\frac{77}{28}-\frac{2}{7}\right)\right)\right)+\frac{4}{3}+\frac{15}{4}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Least common multiple of 28 and 4 is 28. Convert \frac{15}{28} and \frac{11}{4} to fractions with denominator 28.
\sqrt{\frac{9}{8}-\left(\frac{9}{8}-\left(\frac{15}{4}-\left(\frac{15+77}{28}-\frac{2}{7}\right)\right)\right)+\frac{4}{3}+\frac{15}{4}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Since \frac{15}{28} and \frac{77}{28} have the same denominator, add them by adding their numerators.
\sqrt{\frac{9}{8}-\left(\frac{9}{8}-\left(\frac{15}{4}-\left(\frac{92}{28}-\frac{2}{7}\right)\right)\right)+\frac{4}{3}+\frac{15}{4}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Add 15 and 77 to get 92.
\sqrt{\frac{9}{8}-\left(\frac{9}{8}-\left(\frac{15}{4}-\left(\frac{23}{7}-\frac{2}{7}\right)\right)\right)+\frac{4}{3}+\frac{15}{4}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Reduce the fraction \frac{92}{28} to lowest terms by extracting and canceling out 4.
\sqrt{\frac{9}{8}-\left(\frac{9}{8}-\left(\frac{15}{4}-\frac{23-2}{7}\right)\right)+\frac{4}{3}+\frac{15}{4}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Since \frac{23}{7} and \frac{2}{7} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{9}{8}-\left(\frac{9}{8}-\left(\frac{15}{4}-\frac{21}{7}\right)\right)+\frac{4}{3}+\frac{15}{4}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Subtract 2 from 23 to get 21.
\sqrt{\frac{9}{8}-\left(\frac{9}{8}-\left(\frac{15}{4}-3\right)\right)+\frac{4}{3}+\frac{15}{4}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Divide 21 by 7 to get 3.
\sqrt{\frac{9}{8}-\left(\frac{9}{8}-\left(\frac{15}{4}-\frac{12}{4}\right)\right)+\frac{4}{3}+\frac{15}{4}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Convert 3 to fraction \frac{12}{4}.
\sqrt{\frac{9}{8}-\left(\frac{9}{8}-\frac{15-12}{4}\right)+\frac{4}{3}+\frac{15}{4}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Since \frac{15}{4} and \frac{12}{4} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{9}{8}-\left(\frac{9}{8}-\frac{3}{4}\right)+\frac{4}{3}+\frac{15}{4}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Subtract 12 from 15 to get 3.
\sqrt{\frac{9}{8}-\left(\frac{9}{8}-\frac{6}{8}\right)+\frac{4}{3}+\frac{15}{4}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Least common multiple of 8 and 4 is 8. Convert \frac{9}{8} and \frac{3}{4} to fractions with denominator 8.
\sqrt{\frac{9}{8}-\frac{9-6}{8}+\frac{4}{3}+\frac{15}{4}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Since \frac{9}{8} and \frac{6}{8} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{9}{8}-\frac{3}{8}+\frac{4}{3}+\frac{15}{4}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Subtract 6 from 9 to get 3.
\sqrt{\frac{9-3}{8}+\frac{4}{3}+\frac{15}{4}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Since \frac{9}{8} and \frac{3}{8} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{6}{8}+\frac{4}{3}+\frac{15}{4}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Subtract 3 from 9 to get 6.
\sqrt{\frac{3}{4}+\frac{4}{3}+\frac{15}{4}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Reduce the fraction \frac{6}{8} to lowest terms by extracting and canceling out 2.
\sqrt{\frac{3}{4}+\frac{16}{12}+\frac{45}{12}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Least common multiple of 3 and 4 is 12. Convert \frac{4}{3} and \frac{15}{4} to fractions with denominator 12.
\sqrt{\frac{3}{4}+\frac{16+45}{12}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Since \frac{16}{12} and \frac{45}{12} have the same denominator, add them by adding their numerators.
\sqrt{\frac{3}{4}+\frac{61}{12}-\frac{25}{12}-\left(12-\frac{21}{2}\right)}
Add 16 and 45 to get 61.
\sqrt{\frac{3}{4}+\frac{61-25}{12}-\left(12-\frac{21}{2}\right)}
Since \frac{61}{12} and \frac{25}{12} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{3}{4}+\frac{36}{12}-\left(12-\frac{21}{2}\right)}
Subtract 25 from 61 to get 36.
\sqrt{\frac{3}{4}+3-\left(12-\frac{21}{2}\right)}
Divide 36 by 12 to get 3.
\sqrt{\frac{3}{4}+3-\left(\frac{24}{2}-\frac{21}{2}\right)}
Convert 12 to fraction \frac{24}{2}.
\sqrt{\frac{3}{4}+3-\frac{24-21}{2}}
Since \frac{24}{2} and \frac{21}{2} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{3}{4}+3-\frac{3}{2}}
Subtract 21 from 24 to get 3.
\sqrt{\frac{3}{4}+\frac{6}{2}-\frac{3}{2}}
Convert 3 to fraction \frac{6}{2}.
\sqrt{\frac{3}{4}+\frac{6-3}{2}}
Since \frac{6}{2} and \frac{3}{2} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{3}{4}+\frac{3}{2}}
Subtract 3 from 6 to get 3.
\sqrt{\frac{3}{4}+\frac{6}{4}}
Least common multiple of 4 and 2 is 4. Convert \frac{3}{4} and \frac{3}{2} to fractions with denominator 4.
\sqrt{\frac{3+6}{4}}
Since \frac{3}{4} and \frac{6}{4} have the same denominator, add them by adding their numerators.
\sqrt{\frac{9}{4}}
Add 3 and 6 to get 9.
\frac{3}{2}
Rewrite the square root of the division \frac{9}{4} as the division of square roots \frac{\sqrt{9}}{\sqrt{4}}. Take the square root of both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}