Evaluate
\frac{\sqrt{894}}{24}\approx 1.245826366
Share
Copied to clipboard
\sqrt{\left(\frac{5}{12}+\frac{1}{2}-\frac{1}{2}\right)\left(\frac{2}{3}+\frac{1}{8}\right)-\frac{1}{3}+1+\frac{5}{9}}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\sqrt{\left(\frac{5}{12}+\frac{6}{12}-\frac{1}{2}\right)\left(\frac{2}{3}+\frac{1}{8}\right)-\frac{1}{3}+1+\frac{5}{9}}
Least common multiple of 12 and 2 is 12. Convert \frac{5}{12} and \frac{1}{2} to fractions with denominator 12.
\sqrt{\left(\frac{5+6}{12}-\frac{1}{2}\right)\left(\frac{2}{3}+\frac{1}{8}\right)-\frac{1}{3}+1+\frac{5}{9}}
Since \frac{5}{12} and \frac{6}{12} have the same denominator, add them by adding their numerators.
\sqrt{\left(\frac{11}{12}-\frac{1}{2}\right)\left(\frac{2}{3}+\frac{1}{8}\right)-\frac{1}{3}+1+\frac{5}{9}}
Add 5 and 6 to get 11.
\sqrt{\left(\frac{11}{12}-\frac{6}{12}\right)\left(\frac{2}{3}+\frac{1}{8}\right)-\frac{1}{3}+1+\frac{5}{9}}
Least common multiple of 12 and 2 is 12. Convert \frac{11}{12} and \frac{1}{2} to fractions with denominator 12.
\sqrt{\frac{11-6}{12}\left(\frac{2}{3}+\frac{1}{8}\right)-\frac{1}{3}+1+\frac{5}{9}}
Since \frac{11}{12} and \frac{6}{12} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{5}{12}\left(\frac{2}{3}+\frac{1}{8}\right)-\frac{1}{3}+1+\frac{5}{9}}
Subtract 6 from 11 to get 5.
\sqrt{\frac{5}{12}\left(\frac{16}{24}+\frac{3}{24}\right)-\frac{1}{3}+1+\frac{5}{9}}
Least common multiple of 3 and 8 is 24. Convert \frac{2}{3} and \frac{1}{8} to fractions with denominator 24.
\sqrt{\frac{5}{12}\times \frac{16+3}{24}-\frac{1}{3}+1+\frac{5}{9}}
Since \frac{16}{24} and \frac{3}{24} have the same denominator, add them by adding their numerators.
\sqrt{\frac{5}{12}\times \frac{19}{24}-\frac{1}{3}+1+\frac{5}{9}}
Add 16 and 3 to get 19.
\sqrt{\frac{5\times 19}{12\times 24}-\frac{1}{3}+1+\frac{5}{9}}
Multiply \frac{5}{12} times \frac{19}{24} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{95}{288}-\frac{1}{3}+1+\frac{5}{9}}
Do the multiplications in the fraction \frac{5\times 19}{12\times 24}.
\sqrt{\frac{95}{288}-\frac{96}{288}+1+\frac{5}{9}}
Least common multiple of 288 and 3 is 288. Convert \frac{95}{288} and \frac{1}{3} to fractions with denominator 288.
\sqrt{\frac{95-96}{288}+1+\frac{5}{9}}
Since \frac{95}{288} and \frac{96}{288} have the same denominator, subtract them by subtracting their numerators.
\sqrt{-\frac{1}{288}+1+\frac{5}{9}}
Subtract 96 from 95 to get -1.
\sqrt{-\frac{1}{288}+\frac{288}{288}+\frac{5}{9}}
Convert 1 to fraction \frac{288}{288}.
\sqrt{\frac{-1+288}{288}+\frac{5}{9}}
Since -\frac{1}{288} and \frac{288}{288} have the same denominator, add them by adding their numerators.
\sqrt{\frac{287}{288}+\frac{5}{9}}
Add -1 and 288 to get 287.
\sqrt{\frac{287}{288}+\frac{160}{288}}
Least common multiple of 288 and 9 is 288. Convert \frac{287}{288} and \frac{5}{9} to fractions with denominator 288.
\sqrt{\frac{287+160}{288}}
Since \frac{287}{288} and \frac{160}{288} have the same denominator, add them by adding their numerators.
\sqrt{\frac{447}{288}}
Add 287 and 160 to get 447.
\sqrt{\frac{149}{96}}
Reduce the fraction \frac{447}{288} to lowest terms by extracting and canceling out 3.
\frac{\sqrt{149}}{\sqrt{96}}
Rewrite the square root of the division \sqrt{\frac{149}{96}} as the division of square roots \frac{\sqrt{149}}{\sqrt{96}}.
\frac{\sqrt{149}}{4\sqrt{6}}
Factor 96=4^{2}\times 6. Rewrite the square root of the product \sqrt{4^{2}\times 6} as the product of square roots \sqrt{4^{2}}\sqrt{6}. Take the square root of 4^{2}.
\frac{\sqrt{149}\sqrt{6}}{4\left(\sqrt{6}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{149}}{4\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{\sqrt{149}\sqrt{6}}{4\times 6}
The square of \sqrt{6} is 6.
\frac{\sqrt{894}}{4\times 6}
To multiply \sqrt{149} and \sqrt{6}, multiply the numbers under the square root.
\frac{\sqrt{894}}{24}
Multiply 4 and 6 to get 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}