Evaluate (complex solution)
\frac{5\sqrt{6}i}{7}\approx 1.749635531i
Real Part (complex solution)
0
Evaluate
\text{Indeterminate}
Share
Copied to clipboard
\sqrt{\frac{625}{196}-\left(\frac{5}{2}\right)^{2}}
Calculate \frac{25}{14} to the power of 2 and get \frac{625}{196}.
\sqrt{\frac{625}{196}-\frac{25}{4}}
Calculate \frac{5}{2} to the power of 2 and get \frac{25}{4}.
\sqrt{\frac{625}{196}-\frac{1225}{196}}
Least common multiple of 196 and 4 is 196. Convert \frac{625}{196} and \frac{25}{4} to fractions with denominator 196.
\sqrt{\frac{625-1225}{196}}
Since \frac{625}{196} and \frac{1225}{196} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{-600}{196}}
Subtract 1225 from 625 to get -600.
\sqrt{-\frac{150}{49}}
Reduce the fraction \frac{-600}{196} to lowest terms by extracting and canceling out 4.
\frac{\sqrt{-150}}{\sqrt{49}}
Rewrite the square root of the division \sqrt{-\frac{150}{49}} as the division of square roots \frac{\sqrt{-150}}{\sqrt{49}}.
\frac{5i\sqrt{6}}{\sqrt{49}}
Factor -150=\left(5i\right)^{2}\times 6. Rewrite the square root of the product \sqrt{\left(5i\right)^{2}\times 6} as the product of square roots \sqrt{\left(5i\right)^{2}}\sqrt{6}. Take the square root of \left(5i\right)^{2}.
\frac{5i\sqrt{6}}{7}
Calculate the square root of 49 and get 7.
\frac{5}{7}i\sqrt{6}
Divide 5i\sqrt{6} by 7 to get \frac{5}{7}i\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}