Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\frac{\left(10\sqrt{39}\right)^{2}}{13^{2}}+\left(\frac{5\sqrt{13}}{13}+\sqrt{13}\right)^{2}}
To raise \frac{10\sqrt{39}}{13} to a power, raise both numerator and denominator to the power and then divide.
\sqrt{\frac{\left(10\sqrt{39}\right)^{2}}{13^{2}}+\left(\frac{18}{13}\sqrt{13}\right)^{2}}
Combine \frac{5\sqrt{13}}{13} and \sqrt{13} to get \frac{18}{13}\sqrt{13}.
\sqrt{\frac{\left(10\sqrt{39}\right)^{2}}{13^{2}}+\left(\frac{18}{13}\right)^{2}\left(\sqrt{13}\right)^{2}}
Expand \left(\frac{18}{13}\sqrt{13}\right)^{2}.
\sqrt{\frac{\left(10\sqrt{39}\right)^{2}}{13^{2}}+\frac{324}{169}\left(\sqrt{13}\right)^{2}}
Calculate \frac{18}{13} to the power of 2 and get \frac{324}{169}.
\sqrt{\frac{\left(10\sqrt{39}\right)^{2}}{13^{2}}+\frac{324}{169}\times 13}
The square of \sqrt{13} is 13.
\sqrt{\frac{\left(10\sqrt{39}\right)^{2}}{13^{2}}+\frac{324}{13}}
Multiply \frac{324}{169} and 13 to get \frac{324}{13}.
\sqrt{\frac{\left(10\sqrt{39}\right)^{2}}{169}+\frac{324\times 13}{169}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 13^{2} and 13 is 169. Multiply \frac{324}{13} times \frac{13}{13}.
\sqrt{\frac{\left(10\sqrt{39}\right)^{2}+324\times 13}{169}}
Since \frac{\left(10\sqrt{39}\right)^{2}}{169} and \frac{324\times 13}{169} have the same denominator, add them by adding their numerators.
\sqrt{\frac{10^{2}\left(\sqrt{39}\right)^{2}+324\times 13}{169}}
Expand \left(10\sqrt{39}\right)^{2}.
\sqrt{\frac{100\left(\sqrt{39}\right)^{2}+324\times 13}{169}}
Calculate 10 to the power of 2 and get 100.
\sqrt{\frac{100\times 39+324\times 13}{169}}
The square of \sqrt{39} is 39.
\sqrt{\frac{3900+324\times 13}{169}}
Multiply 100 and 39 to get 3900.
\sqrt{\frac{3900+4212}{169}}
Multiply 324 and 13 to get 4212.
\sqrt{\frac{8112}{169}}
Add 3900 and 4212 to get 8112.
\sqrt{48}
Divide 8112 by 169 to get 48.
4\sqrt{3}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.