Evaluate
4\sqrt{3}\approx 6.92820323
Share
Copied to clipboard
\sqrt{\frac{\left(10\sqrt{39}\right)^{2}}{13^{2}}+\left(\frac{5\sqrt{13}}{13}+\sqrt{13}\right)^{2}}
To raise \frac{10\sqrt{39}}{13} to a power, raise both numerator and denominator to the power and then divide.
\sqrt{\frac{\left(10\sqrt{39}\right)^{2}}{13^{2}}+\left(\frac{18}{13}\sqrt{13}\right)^{2}}
Combine \frac{5\sqrt{13}}{13} and \sqrt{13} to get \frac{18}{13}\sqrt{13}.
\sqrt{\frac{\left(10\sqrt{39}\right)^{2}}{13^{2}}+\left(\frac{18}{13}\right)^{2}\left(\sqrt{13}\right)^{2}}
Expand \left(\frac{18}{13}\sqrt{13}\right)^{2}.
\sqrt{\frac{\left(10\sqrt{39}\right)^{2}}{13^{2}}+\frac{324}{169}\left(\sqrt{13}\right)^{2}}
Calculate \frac{18}{13} to the power of 2 and get \frac{324}{169}.
\sqrt{\frac{\left(10\sqrt{39}\right)^{2}}{13^{2}}+\frac{324}{169}\times 13}
The square of \sqrt{13} is 13.
\sqrt{\frac{\left(10\sqrt{39}\right)^{2}}{13^{2}}+\frac{324}{13}}
Multiply \frac{324}{169} and 13 to get \frac{324}{13}.
\sqrt{\frac{\left(10\sqrt{39}\right)^{2}}{169}+\frac{324\times 13}{169}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 13^{2} and 13 is 169. Multiply \frac{324}{13} times \frac{13}{13}.
\sqrt{\frac{\left(10\sqrt{39}\right)^{2}+324\times 13}{169}}
Since \frac{\left(10\sqrt{39}\right)^{2}}{169} and \frac{324\times 13}{169} have the same denominator, add them by adding their numerators.
\sqrt{\frac{10^{2}\left(\sqrt{39}\right)^{2}+324\times 13}{169}}
Expand \left(10\sqrt{39}\right)^{2}.
\sqrt{\frac{100\left(\sqrt{39}\right)^{2}+324\times 13}{169}}
Calculate 10 to the power of 2 and get 100.
\sqrt{\frac{100\times 39+324\times 13}{169}}
The square of \sqrt{39} is 39.
\sqrt{\frac{3900+324\times 13}{169}}
Multiply 100 and 39 to get 3900.
\sqrt{\frac{3900+4212}{169}}
Multiply 324 and 13 to get 4212.
\sqrt{\frac{8112}{169}}
Add 3900 and 4212 to get 8112.
\sqrt{48}
Divide 8112 by 169 to get 48.
4\sqrt{3}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}