Evaluate
\frac{5\sqrt{237}}{3}\approx 25.658007197
Quiz
Arithmetic
5 problems similar to:
\sqrt { ( \frac { 10 \sqrt { 3 } } { 3 } ) ^ { 2 } + 25 ^ { 2 } }
Share
Copied to clipboard
\sqrt{\frac{\left(10\sqrt{3}\right)^{2}}{3^{2}}+25^{2}}
To raise \frac{10\sqrt{3}}{3} to a power, raise both numerator and denominator to the power and then divide.
\sqrt{\frac{\left(10\sqrt{3}\right)^{2}}{3^{2}}+625}
Calculate 25 to the power of 2 and get 625.
\sqrt{\frac{\left(10\sqrt{3}\right)^{2}}{3^{2}}+\frac{625\times 3^{2}}{3^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 625 times \frac{3^{2}}{3^{2}}.
\sqrt{\frac{\left(10\sqrt{3}\right)^{2}+625\times 3^{2}}{3^{2}}}
Since \frac{\left(10\sqrt{3}\right)^{2}}{3^{2}} and \frac{625\times 3^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
\sqrt{\frac{10^{2}\left(\sqrt{3}\right)^{2}+625\times 3^{2}}{3^{2}}}
Expand \left(10\sqrt{3}\right)^{2}.
\sqrt{\frac{100\left(\sqrt{3}\right)^{2}+625\times 3^{2}}{3^{2}}}
Calculate 10 to the power of 2 and get 100.
\sqrt{\frac{100\times 3+625\times 3^{2}}{3^{2}}}
The square of \sqrt{3} is 3.
\sqrt{\frac{300+625\times 3^{2}}{3^{2}}}
Multiply 100 and 3 to get 300.
\sqrt{\frac{300+625\times 9}{3^{2}}}
Calculate 3 to the power of 2 and get 9.
\sqrt{\frac{300+5625}{3^{2}}}
Multiply 625 and 9 to get 5625.
\sqrt{\frac{5925}{3^{2}}}
Add 300 and 5625 to get 5925.
\sqrt{\frac{5925}{9}}
Calculate 3 to the power of 2 and get 9.
\sqrt{\frac{1975}{3}}
Reduce the fraction \frac{5925}{9} to lowest terms by extracting and canceling out 3.
\frac{\sqrt{1975}}{\sqrt{3}}
Rewrite the square root of the division \sqrt{\frac{1975}{3}} as the division of square roots \frac{\sqrt{1975}}{\sqrt{3}}.
\frac{5\sqrt{79}}{\sqrt{3}}
Factor 1975=5^{2}\times 79. Rewrite the square root of the product \sqrt{5^{2}\times 79} as the product of square roots \sqrt{5^{2}}\sqrt{79}. Take the square root of 5^{2}.
\frac{5\sqrt{79}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{5\sqrt{79}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{5\sqrt{79}\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{5\sqrt{237}}{3}
To multiply \sqrt{79} and \sqrt{3}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}