Evaluate
i
Real Part
0
Share
Copied to clipboard
\sqrt{\left(\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+2i\right)^{2}}
Multiply both numerator and denominator of \frac{1-i}{1+i} by the complex conjugate of the denominator, 1-i.
\sqrt{\left(\frac{-2i}{2}+2i\right)^{2}}
Do the multiplications in \frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
\sqrt{\left(-i+2i\right)^{2}}
Divide -2i by 2 to get -i.
\sqrt{i^{2}}
Add -i and 2i to get i.
\sqrt{-1}
Calculate i to the power of 2 and get -1.
i
Calculate the square root of -1 and get i.
Re(\sqrt{\left(\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+2i\right)^{2}})
Multiply both numerator and denominator of \frac{1-i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\sqrt{\left(\frac{-2i}{2}+2i\right)^{2}})
Do the multiplications in \frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
Re(\sqrt{\left(-i+2i\right)^{2}})
Divide -2i by 2 to get -i.
Re(\sqrt{i^{2}})
Add -i and 2i to get i.
Re(\sqrt{-1})
Calculate i to the power of 2 and get -1.
Re(i)
Calculate the square root of -1 and get i.
0
The real part of i is 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}