Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\left(\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+2i\right)^{2}}
Multiply both numerator and denominator of \frac{1-i}{1+i} by the complex conjugate of the denominator, 1-i.
\sqrt{\left(\frac{-2i}{2}+2i\right)^{2}}
Do the multiplications in \frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
\sqrt{\left(-i+2i\right)^{2}}
Divide -2i by 2 to get -i.
\sqrt{i^{2}}
Add -i and 2i to get i.
\sqrt{-1}
Calculate i to the power of 2 and get -1.
i
Calculate the square root of -1 and get i.
Re(\sqrt{\left(\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+2i\right)^{2}})
Multiply both numerator and denominator of \frac{1-i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\sqrt{\left(\frac{-2i}{2}+2i\right)^{2}})
Do the multiplications in \frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
Re(\sqrt{\left(-i+2i\right)^{2}})
Divide -2i by 2 to get -i.
Re(\sqrt{i^{2}})
Add -i and 2i to get i.
Re(\sqrt{-1})
Calculate i to the power of 2 and get -1.
Re(i)
Calculate the square root of -1 and get i.
0
The real part of i is 0.