Evaluate
\frac{1}{3}\approx 0.333333333
Factor
\frac{1}{3} = 0.3333333333333333
Share
Copied to clipboard
\sqrt{\frac{1}{9}+\frac{6}{9}-\frac{5}{27}-\left(\frac{5}{9}-\left(\frac{2}{3}-\left(\frac{4}{27}+\frac{4}{9}\right)\right)\right)}
Least common multiple of 9 and 3 is 9. Convert \frac{1}{9} and \frac{2}{3} to fractions with denominator 9.
\sqrt{\frac{1+6}{9}-\frac{5}{27}-\left(\frac{5}{9}-\left(\frac{2}{3}-\left(\frac{4}{27}+\frac{4}{9}\right)\right)\right)}
Since \frac{1}{9} and \frac{6}{9} have the same denominator, add them by adding their numerators.
\sqrt{\frac{7}{9}-\frac{5}{27}-\left(\frac{5}{9}-\left(\frac{2}{3}-\left(\frac{4}{27}+\frac{4}{9}\right)\right)\right)}
Add 1 and 6 to get 7.
\sqrt{\frac{21}{27}-\frac{5}{27}-\left(\frac{5}{9}-\left(\frac{2}{3}-\left(\frac{4}{27}+\frac{4}{9}\right)\right)\right)}
Least common multiple of 9 and 27 is 27. Convert \frac{7}{9} and \frac{5}{27} to fractions with denominator 27.
\sqrt{\frac{21-5}{27}-\left(\frac{5}{9}-\left(\frac{2}{3}-\left(\frac{4}{27}+\frac{4}{9}\right)\right)\right)}
Since \frac{21}{27} and \frac{5}{27} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{16}{27}-\left(\frac{5}{9}-\left(\frac{2}{3}-\left(\frac{4}{27}+\frac{4}{9}\right)\right)\right)}
Subtract 5 from 21 to get 16.
\sqrt{\frac{16}{27}-\left(\frac{5}{9}-\left(\frac{2}{3}-\left(\frac{4}{27}+\frac{12}{27}\right)\right)\right)}
Least common multiple of 27 and 9 is 27. Convert \frac{4}{27} and \frac{4}{9} to fractions with denominator 27.
\sqrt{\frac{16}{27}-\left(\frac{5}{9}-\left(\frac{2}{3}-\frac{4+12}{27}\right)\right)}
Since \frac{4}{27} and \frac{12}{27} have the same denominator, add them by adding their numerators.
\sqrt{\frac{16}{27}-\left(\frac{5}{9}-\left(\frac{2}{3}-\frac{16}{27}\right)\right)}
Add 4 and 12 to get 16.
\sqrt{\frac{16}{27}-\left(\frac{5}{9}-\left(\frac{18}{27}-\frac{16}{27}\right)\right)}
Least common multiple of 3 and 27 is 27. Convert \frac{2}{3} and \frac{16}{27} to fractions with denominator 27.
\sqrt{\frac{16}{27}-\left(\frac{5}{9}-\frac{18-16}{27}\right)}
Since \frac{18}{27} and \frac{16}{27} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{16}{27}-\left(\frac{5}{9}-\frac{2}{27}\right)}
Subtract 16 from 18 to get 2.
\sqrt{\frac{16}{27}-\left(\frac{15}{27}-\frac{2}{27}\right)}
Least common multiple of 9 and 27 is 27. Convert \frac{5}{9} and \frac{2}{27} to fractions with denominator 27.
\sqrt{\frac{16}{27}-\frac{15-2}{27}}
Since \frac{15}{27} and \frac{2}{27} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{16}{27}-\frac{13}{27}}
Subtract 2 from 15 to get 13.
\sqrt{\frac{16-13}{27}}
Since \frac{16}{27} and \frac{13}{27} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{3}{27}}
Subtract 13 from 16 to get 3.
\sqrt{\frac{1}{9}}
Reduce the fraction \frac{3}{27} to lowest terms by extracting and canceling out 3.
\frac{1}{3}
Rewrite the square root of the division \frac{1}{9} as the division of square roots \frac{\sqrt{1}}{\sqrt{9}}. Take the square root of both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}