Evaluate
\frac{5}{6}\approx 0.833333333
Factor
\frac{5}{2 \cdot 3} = 0.8333333333333334
Share
Copied to clipboard
\sqrt{\frac{\frac{4}{12}+\frac{3}{12}}{2-\frac{2}{7}}}+\sqrt{\frac{9}{144}}
Least common multiple of 3 and 4 is 12. Convert \frac{1}{3} and \frac{1}{4} to fractions with denominator 12.
\sqrt{\frac{\frac{4+3}{12}}{2-\frac{2}{7}}}+\sqrt{\frac{9}{144}}
Since \frac{4}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\sqrt{\frac{\frac{7}{12}}{2-\frac{2}{7}}}+\sqrt{\frac{9}{144}}
Add 4 and 3 to get 7.
\sqrt{\frac{\frac{7}{12}}{\frac{14}{7}-\frac{2}{7}}}+\sqrt{\frac{9}{144}}
Convert 2 to fraction \frac{14}{7}.
\sqrt{\frac{\frac{7}{12}}{\frac{14-2}{7}}}+\sqrt{\frac{9}{144}}
Since \frac{14}{7} and \frac{2}{7} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{\frac{7}{12}}{\frac{12}{7}}}+\sqrt{\frac{9}{144}}
Subtract 2 from 14 to get 12.
\sqrt{\frac{7}{12}\times \frac{7}{12}}+\sqrt{\frac{9}{144}}
Divide \frac{7}{12} by \frac{12}{7} by multiplying \frac{7}{12} by the reciprocal of \frac{12}{7}.
\sqrt{\frac{7\times 7}{12\times 12}}+\sqrt{\frac{9}{144}}
Multiply \frac{7}{12} times \frac{7}{12} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{49}{144}}+\sqrt{\frac{9}{144}}
Do the multiplications in the fraction \frac{7\times 7}{12\times 12}.
\frac{7}{12}+\sqrt{\frac{9}{144}}
Rewrite the square root of the division \frac{49}{144} as the division of square roots \frac{\sqrt{49}}{\sqrt{144}}. Take the square root of both numerator and denominator.
\frac{7}{12}+\sqrt{\frac{1}{16}}
Reduce the fraction \frac{9}{144} to lowest terms by extracting and canceling out 9.
\frac{7}{12}+\frac{1}{4}
Rewrite the square root of the division \frac{1}{16} as the division of square roots \frac{\sqrt{1}}{\sqrt{16}}. Take the square root of both numerator and denominator.
\frac{7}{12}+\frac{3}{12}
Least common multiple of 12 and 4 is 12. Convert \frac{7}{12} and \frac{1}{4} to fractions with denominator 12.
\frac{7+3}{12}
Since \frac{7}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\frac{10}{12}
Add 7 and 3 to get 10.
\frac{5}{6}
Reduce the fraction \frac{10}{12} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}