Evaluate
\frac{3\sqrt{21}}{8}-1\approx 0.718465886
Factor
\frac{3 \sqrt{21} - 8}{8} = 0.71846588560844
Share
Copied to clipboard
\frac{\sqrt{\frac{1}{4}-\left(\frac{1}{5}\right)^{2}}\times \frac{3}{2}}{\frac{2}{5}}-\frac{\left(\frac{3}{4}\right)^{2}\times \frac{4}{3}}{\frac{3}{4}}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{\sqrt{\frac{1}{4}-\frac{1}{25}}\times \frac{3}{2}}{\frac{2}{5}}-\frac{\left(\frac{3}{4}\right)^{2}\times \frac{4}{3}}{\frac{3}{4}}
Calculate \frac{1}{5} to the power of 2 and get \frac{1}{25}.
\frac{\sqrt{\frac{25}{100}-\frac{4}{100}}\times \frac{3}{2}}{\frac{2}{5}}-\frac{\left(\frac{3}{4}\right)^{2}\times \frac{4}{3}}{\frac{3}{4}}
Least common multiple of 4 and 25 is 100. Convert \frac{1}{4} and \frac{1}{25} to fractions with denominator 100.
\frac{\sqrt{\frac{25-4}{100}}\times \frac{3}{2}}{\frac{2}{5}}-\frac{\left(\frac{3}{4}\right)^{2}\times \frac{4}{3}}{\frac{3}{4}}
Since \frac{25}{100} and \frac{4}{100} have the same denominator, subtract them by subtracting their numerators.
\frac{\sqrt{\frac{21}{100}}\times \frac{3}{2}}{\frac{2}{5}}-\frac{\left(\frac{3}{4}\right)^{2}\times \frac{4}{3}}{\frac{3}{4}}
Subtract 4 from 25 to get 21.
\frac{\frac{\sqrt{21}}{\sqrt{100}}\times \frac{3}{2}}{\frac{2}{5}}-\frac{\left(\frac{3}{4}\right)^{2}\times \frac{4}{3}}{\frac{3}{4}}
Rewrite the square root of the division \sqrt{\frac{21}{100}} as the division of square roots \frac{\sqrt{21}}{\sqrt{100}}.
\frac{\frac{\sqrt{21}}{10}\times \frac{3}{2}}{\frac{2}{5}}-\frac{\left(\frac{3}{4}\right)^{2}\times \frac{4}{3}}{\frac{3}{4}}
Calculate the square root of 100 and get 10.
\frac{\frac{\sqrt{21}\times 3}{10\times 2}}{\frac{2}{5}}-\frac{\left(\frac{3}{4}\right)^{2}\times \frac{4}{3}}{\frac{3}{4}}
Multiply \frac{\sqrt{21}}{10} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{21}\times 3\times 5}{10\times 2\times 2}-\frac{\left(\frac{3}{4}\right)^{2}\times \frac{4}{3}}{\frac{3}{4}}
Divide \frac{\sqrt{21}\times 3}{10\times 2} by \frac{2}{5} by multiplying \frac{\sqrt{21}\times 3}{10\times 2} by the reciprocal of \frac{2}{5}.
\frac{3\sqrt{21}}{2\times 2\times 2}-\frac{\left(\frac{3}{4}\right)^{2}\times \frac{4}{3}}{\frac{3}{4}}
Cancel out 5 in both numerator and denominator.
\frac{3\sqrt{21}}{4\times 2}-\frac{\left(\frac{3}{4}\right)^{2}\times \frac{4}{3}}{\frac{3}{4}}
Multiply 2 and 2 to get 4.
\frac{3\sqrt{21}}{8}-\frac{\left(\frac{3}{4}\right)^{2}\times \frac{4}{3}}{\frac{3}{4}}
Multiply 4 and 2 to get 8.
\frac{3\sqrt{21}}{8}-\frac{\frac{9}{16}\times \frac{4}{3}}{\frac{3}{4}}
Calculate \frac{3}{4} to the power of 2 and get \frac{9}{16}.
\frac{3\sqrt{21}}{8}-\frac{\frac{9\times 4}{16\times 3}}{\frac{3}{4}}
Multiply \frac{9}{16} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{3\sqrt{21}}{8}-\frac{\frac{36}{48}}{\frac{3}{4}}
Do the multiplications in the fraction \frac{9\times 4}{16\times 3}.
\frac{3\sqrt{21}}{8}-\frac{\frac{3}{4}}{\frac{3}{4}}
Reduce the fraction \frac{36}{48} to lowest terms by extracting and canceling out 12.
\frac{3\sqrt{21}}{8}-1
Divide \frac{3}{4} by \frac{3}{4} to get 1.
\frac{3\sqrt{21}}{8}-\frac{8}{8}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{8}{8}.
\frac{3\sqrt{21}-8}{8}
Since \frac{3\sqrt{21}}{8} and \frac{8}{8} have the same denominator, subtract them by subtracting their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}