Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\left(\frac{5}{300}\right)^{2}+\left(\frac{0.05}{3}\right)^{2}+\left(\frac{0.05}{3}\right)^{2}}
Expand \frac{0.05}{3} by multiplying both numerator and the denominator by 100.
\sqrt{\left(\frac{1}{60}\right)^{2}+\left(\frac{0.05}{3}\right)^{2}+\left(\frac{0.05}{3}\right)^{2}}
Reduce the fraction \frac{5}{300} to lowest terms by extracting and canceling out 5.
\sqrt{\frac{1}{3600}+\left(\frac{0.05}{3}\right)^{2}+\left(\frac{0.05}{3}\right)^{2}}
Calculate \frac{1}{60} to the power of 2 and get \frac{1}{3600}.
\sqrt{\frac{1}{3600}+\left(\frac{5}{300}\right)^{2}+\left(\frac{0.05}{3}\right)^{2}}
Expand \frac{0.05}{3} by multiplying both numerator and the denominator by 100.
\sqrt{\frac{1}{3600}+\left(\frac{1}{60}\right)^{2}+\left(\frac{0.05}{3}\right)^{2}}
Reduce the fraction \frac{5}{300} to lowest terms by extracting and canceling out 5.
\sqrt{\frac{1}{3600}+\frac{1}{3600}+\left(\frac{0.05}{3}\right)^{2}}
Calculate \frac{1}{60} to the power of 2 and get \frac{1}{3600}.
\sqrt{\frac{1}{1800}+\left(\frac{0.05}{3}\right)^{2}}
Add \frac{1}{3600} and \frac{1}{3600} to get \frac{1}{1800}.
\sqrt{\frac{1}{1800}+\left(\frac{5}{300}\right)^{2}}
Expand \frac{0.05}{3} by multiplying both numerator and the denominator by 100.
\sqrt{\frac{1}{1800}+\left(\frac{1}{60}\right)^{2}}
Reduce the fraction \frac{5}{300} to lowest terms by extracting and canceling out 5.
\sqrt{\frac{1}{1800}+\frac{1}{3600}}
Calculate \frac{1}{60} to the power of 2 and get \frac{1}{3600}.
\sqrt{\frac{1}{1200}}
Add \frac{1}{1800} and \frac{1}{3600} to get \frac{1}{1200}.
\frac{\sqrt{1}}{\sqrt{1200}}
Rewrite the square root of the division \sqrt{\frac{1}{1200}} as the division of square roots \frac{\sqrt{1}}{\sqrt{1200}}.
\frac{1}{\sqrt{1200}}
Calculate the square root of 1 and get 1.
\frac{1}{20\sqrt{3}}
Factor 1200=20^{2}\times 3. Rewrite the square root of the product \sqrt{20^{2}\times 3} as the product of square roots \sqrt{20^{2}}\sqrt{3}. Take the square root of 20^{2}.
\frac{\sqrt{3}}{20\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{1}{20\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{3}}{20\times 3}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}}{60}
Multiply 20 and 3 to get 60.