Solve for r
r=-x\gamma +\left(\sqrt{x+1}+1\right)^{2}
x\geq -1
Solve for r (complex solution)
r=-x\gamma +\left(\sqrt{x+1}+1\right)^{2}
arg(\sqrt{x+1}+1)<\pi
Share
Copied to clipboard
\sqrt{r+x\gamma }-\sqrt{x+1}-\left(-\sqrt{x+1}\right)=1-\left(-\sqrt{x+1}\right)
Subtract -\sqrt{x+1} from both sides of the equation.
\sqrt{r+x\gamma }=1-\left(-\sqrt{x+1}\right)
Subtracting -\sqrt{x+1} from itself leaves 0.
\sqrt{r+x\gamma }=\sqrt{x+1}+1
Subtract -\sqrt{x+1} from 1.
r+x\gamma =\left(\sqrt{x+1}+1\right)^{2}
Square both sides of the equation.
r+x\gamma -x\gamma =\left(\sqrt{x+1}+1\right)^{2}-x\gamma
Subtract \gamma x from both sides of the equation.
r=\left(\sqrt{x+1}+1\right)^{2}-x\gamma
Subtracting \gamma x from itself leaves 0.
r=-x\gamma +\left(\sqrt{x+1}+1\right)^{2}
Subtract \gamma x from \left(1+\sqrt{x+1}\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}