Solve for a
a = \frac{81}{64} = 1\frac{17}{64} = 1.265625
Share
Copied to clipboard
\sqrt{\frac{a}{9}}=6-\frac{5}{2}\sqrt{4a}
Subtract \frac{5}{2}\sqrt{4a} from both sides of the equation.
\left(\sqrt{\frac{a}{9}}\right)^{2}=\left(6-\frac{5}{2}\sqrt{4a}\right)^{2}
Square both sides of the equation.
\frac{a}{9}=\left(6-\frac{5}{2}\sqrt{4a}\right)^{2}
Calculate \sqrt{\frac{a}{9}} to the power of 2 and get \frac{a}{9}.
\frac{a}{9}=36-30\sqrt{4a}+\frac{25}{4}\left(\sqrt{4a}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-\frac{5}{2}\sqrt{4a}\right)^{2}.
\frac{a}{9}=36-30\sqrt{4a}+\frac{25}{4}\times 4a
Calculate \sqrt{4a} to the power of 2 and get 4a.
\frac{a}{9}=36-30\sqrt{4a}+25a
Cancel out 4 and 4.
a=324-270\sqrt{4a}+225a
Multiply both sides of the equation by 9.
a-\left(324+225a\right)=-270\sqrt{4a}
Subtract 324+225a from both sides of the equation.
a-324-225a=-270\sqrt{4a}
To find the opposite of 324+225a, find the opposite of each term.
-224a-324=-270\sqrt{4a}
Combine a and -225a to get -224a.
\left(-224a-324\right)^{2}=\left(-270\sqrt{4a}\right)^{2}
Square both sides of the equation.
50176a^{2}+145152a+104976=\left(-270\sqrt{4a}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-224a-324\right)^{2}.
50176a^{2}+145152a+104976=\left(-270\right)^{2}\left(\sqrt{4a}\right)^{2}
Expand \left(-270\sqrt{4a}\right)^{2}.
50176a^{2}+145152a+104976=72900\left(\sqrt{4a}\right)^{2}
Calculate -270 to the power of 2 and get 72900.
50176a^{2}+145152a+104976=72900\times 4a
Calculate \sqrt{4a} to the power of 2 and get 4a.
50176a^{2}+145152a+104976=291600a
Multiply 72900 and 4 to get 291600.
50176a^{2}+145152a+104976-291600a=0
Subtract 291600a from both sides.
50176a^{2}-146448a+104976=0
Combine 145152a and -291600a to get -146448a.
a=\frac{-\left(-146448\right)±\sqrt{\left(-146448\right)^{2}-4\times 50176\times 104976}}{2\times 50176}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 50176 for a, -146448 for b, and 104976 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-146448\right)±\sqrt{21447016704-4\times 50176\times 104976}}{2\times 50176}
Square -146448.
a=\frac{-\left(-146448\right)±\sqrt{21447016704-200704\times 104976}}{2\times 50176}
Multiply -4 times 50176.
a=\frac{-\left(-146448\right)±\sqrt{21447016704-21069103104}}{2\times 50176}
Multiply -200704 times 104976.
a=\frac{-\left(-146448\right)±\sqrt{377913600}}{2\times 50176}
Add 21447016704 to -21069103104.
a=\frac{-\left(-146448\right)±19440}{2\times 50176}
Take the square root of 377913600.
a=\frac{146448±19440}{2\times 50176}
The opposite of -146448 is 146448.
a=\frac{146448±19440}{100352}
Multiply 2 times 50176.
a=\frac{165888}{100352}
Now solve the equation a=\frac{146448±19440}{100352} when ± is plus. Add 146448 to 19440.
a=\frac{81}{49}
Reduce the fraction \frac{165888}{100352} to lowest terms by extracting and canceling out 2048.
a=\frac{127008}{100352}
Now solve the equation a=\frac{146448±19440}{100352} when ± is minus. Subtract 19440 from 146448.
a=\frac{81}{64}
Reduce the fraction \frac{127008}{100352} to lowest terms by extracting and canceling out 1568.
a=\frac{81}{49} a=\frac{81}{64}
The equation is now solved.
\sqrt{\frac{\frac{81}{49}}{9}}+\frac{5}{2}\sqrt{4\times \frac{81}{49}}=6
Substitute \frac{81}{49} for a in the equation \sqrt{\frac{a}{9}}+\frac{5}{2}\sqrt{4a}=6.
\frac{48}{7}=6
Simplify. The value a=\frac{81}{49} does not satisfy the equation.
\sqrt{\frac{\frac{81}{64}}{9}}+\frac{5}{2}\sqrt{4\times \frac{81}{64}}=6
Substitute \frac{81}{64} for a in the equation \sqrt{\frac{a}{9}}+\frac{5}{2}\sqrt{4a}=6.
6=6
Simplify. The value a=\frac{81}{64} satisfies the equation.
a=\frac{81}{64}
Equation \sqrt{\frac{a}{9}}=-\frac{5\sqrt{4a}}{2}+6 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}