Evaluate
\frac{3\sqrt{22}}{4}\approx 3.51781182
Share
Copied to clipboard
\frac{\sqrt{99}}{\sqrt{8}}
Rewrite the square root of the division \sqrt{\frac{99}{8}} as the division of square roots \frac{\sqrt{99}}{\sqrt{8}}.
\frac{3\sqrt{11}}{\sqrt{8}}
Factor 99=3^{2}\times 11. Rewrite the square root of the product \sqrt{3^{2}\times 11} as the product of square roots \sqrt{3^{2}}\sqrt{11}. Take the square root of 3^{2}.
\frac{3\sqrt{11}}{2\sqrt{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{3\sqrt{11}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{3\sqrt{11}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{3\sqrt{11}\sqrt{2}}{2\times 2}
The square of \sqrt{2} is 2.
\frac{3\sqrt{22}}{2\times 2}
To multiply \sqrt{11} and \sqrt{2}, multiply the numbers under the square root.
\frac{3\sqrt{22}}{4}
Multiply 2 and 2 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}