Evaluate
\frac{\sqrt{1034}}{12}\approx 2.679655865
Share
Copied to clipboard
\sqrt{\frac{29}{4}-\left(\frac{1}{12}\right)^{2}\times 10}
Reduce the fraction \frac{87}{12} to lowest terms by extracting and canceling out 3.
\sqrt{\frac{29}{4}-\frac{1}{144}\times 10}
Calculate \frac{1}{12} to the power of 2 and get \frac{1}{144}.
\sqrt{\frac{29}{4}-\frac{10}{144}}
Multiply \frac{1}{144} and 10 to get \frac{10}{144}.
\sqrt{\frac{29}{4}-\frac{5}{72}}
Reduce the fraction \frac{10}{144} to lowest terms by extracting and canceling out 2.
\sqrt{\frac{522}{72}-\frac{5}{72}}
Least common multiple of 4 and 72 is 72. Convert \frac{29}{4} and \frac{5}{72} to fractions with denominator 72.
\sqrt{\frac{522-5}{72}}
Since \frac{522}{72} and \frac{5}{72} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{517}{72}}
Subtract 5 from 522 to get 517.
\frac{\sqrt{517}}{\sqrt{72}}
Rewrite the square root of the division \sqrt{\frac{517}{72}} as the division of square roots \frac{\sqrt{517}}{\sqrt{72}}.
\frac{\sqrt{517}}{6\sqrt{2}}
Factor 72=6^{2}\times 2. Rewrite the square root of the product \sqrt{6^{2}\times 2} as the product of square roots \sqrt{6^{2}}\sqrt{2}. Take the square root of 6^{2}.
\frac{\sqrt{517}\sqrt{2}}{6\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{517}}{6\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{517}\sqrt{2}}{6\times 2}
The square of \sqrt{2} is 2.
\frac{\sqrt{1034}}{6\times 2}
To multiply \sqrt{517} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{1034}}{12}
Multiply 6 and 2 to get 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}