Evaluate
\frac{16\sqrt{429}}{77}\approx 4.303857699
Share
Copied to clipboard
\sqrt{\frac{38.9376}{2.1\times 1.001}}
Multiply 8.32 and 4.68 to get 38.9376.
\sqrt{\frac{38.9376}{2.1021}}
Multiply 2.1 and 1.001 to get 2.1021.
\sqrt{\frac{389376}{21021}}
Expand \frac{38.9376}{2.1021} by multiplying both numerator and the denominator by 10000.
\sqrt{\frac{9984}{539}}
Reduce the fraction \frac{389376}{21021} to lowest terms by extracting and canceling out 39.
\frac{\sqrt{9984}}{\sqrt{539}}
Rewrite the square root of the division \sqrt{\frac{9984}{539}} as the division of square roots \frac{\sqrt{9984}}{\sqrt{539}}.
\frac{16\sqrt{39}}{\sqrt{539}}
Factor 9984=16^{2}\times 39. Rewrite the square root of the product \sqrt{16^{2}\times 39} as the product of square roots \sqrt{16^{2}}\sqrt{39}. Take the square root of 16^{2}.
\frac{16\sqrt{39}}{7\sqrt{11}}
Factor 539=7^{2}\times 11. Rewrite the square root of the product \sqrt{7^{2}\times 11} as the product of square roots \sqrt{7^{2}}\sqrt{11}. Take the square root of 7^{2}.
\frac{16\sqrt{39}\sqrt{11}}{7\left(\sqrt{11}\right)^{2}}
Rationalize the denominator of \frac{16\sqrt{39}}{7\sqrt{11}} by multiplying numerator and denominator by \sqrt{11}.
\frac{16\sqrt{39}\sqrt{11}}{7\times 11}
The square of \sqrt{11} is 11.
\frac{16\sqrt{429}}{7\times 11}
To multiply \sqrt{39} and \sqrt{11}, multiply the numbers under the square root.
\frac{16\sqrt{429}}{77}
Multiply 7 and 11 to get 77.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}