Evaluate
\frac{\sqrt{33915}}{250}\approx 0.736641025
Share
Copied to clipboard
\sqrt{\frac{8.1396}{15}}
Subtract 1 from 16 to get 15.
\sqrt{\frac{81396}{150000}}
Expand \frac{8.1396}{15} by multiplying both numerator and the denominator by 10000.
\sqrt{\frac{6783}{12500}}
Reduce the fraction \frac{81396}{150000} to lowest terms by extracting and canceling out 12.
\frac{\sqrt{6783}}{\sqrt{12500}}
Rewrite the square root of the division \sqrt{\frac{6783}{12500}} as the division of square roots \frac{\sqrt{6783}}{\sqrt{12500}}.
\frac{\sqrt{6783}}{50\sqrt{5}}
Factor 12500=50^{2}\times 5. Rewrite the square root of the product \sqrt{50^{2}\times 5} as the product of square roots \sqrt{50^{2}}\sqrt{5}. Take the square root of 50^{2}.
\frac{\sqrt{6783}\sqrt{5}}{50\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{6783}}{50\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{6783}\sqrt{5}}{50\times 5}
The square of \sqrt{5} is 5.
\frac{\sqrt{33915}}{50\times 5}
To multiply \sqrt{6783} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{33915}}{250}
Multiply 50 and 5 to get 250.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}