\sqrt { \frac { 8,99 \cdot 10 ^ { 9 } \cdot 3 \cdot 10 ^ { - 6 } } { 4 } } =
Evaluate
\frac{\sqrt{26970}}{2}\approx 82.112727394
Quiz
5 problems similar to:
\sqrt { \frac { 8,99 \cdot 10 ^ { 9 } \cdot 3 \cdot 10 ^ { - 6 } } { 4 } } =
Share
Copied to clipboard
\sqrt{\frac{8,99\times 10^{3}\times 3}{4}}
To multiply powers of the same base, add their exponents. Add 9 and -6 to get 3.
\sqrt{\frac{8,99\times 1000\times 3}{4}}
Calculate 10 to the power of 3 and get 1000.
\sqrt{\frac{8990\times 3}{4}}
Multiply 8,99 and 1000 to get 8990.
\sqrt{\frac{26970}{4}}
Multiply 8990 and 3 to get 26970.
\sqrt{\frac{13485}{2}}
Reduce the fraction \frac{26970}{4} to lowest terms by extracting and canceling out 2.
\frac{\sqrt{13485}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{13485}{2}} as the division of square roots \frac{\sqrt{13485}}{\sqrt{2}}.
\frac{\sqrt{13485}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{13485}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{13485}\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{\sqrt{26970}}{2}
To multiply \sqrt{13485} and \sqrt{2}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}