Evaluate
\frac{2\sqrt{6922641}}{3131}\approx 1.680671491
Share
Copied to clipboard
\sqrt{\frac{8844}{3131}}
Multiply 66 and 134 to get 8844.
\frac{\sqrt{8844}}{\sqrt{3131}}
Rewrite the square root of the division \sqrt{\frac{8844}{3131}} as the division of square roots \frac{\sqrt{8844}}{\sqrt{3131}}.
\frac{2\sqrt{2211}}{\sqrt{3131}}
Factor 8844=2^{2}\times 2211. Rewrite the square root of the product \sqrt{2^{2}\times 2211} as the product of square roots \sqrt{2^{2}}\sqrt{2211}. Take the square root of 2^{2}.
\frac{2\sqrt{2211}\sqrt{3131}}{\left(\sqrt{3131}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{2211}}{\sqrt{3131}} by multiplying numerator and denominator by \sqrt{3131}.
\frac{2\sqrt{2211}\sqrt{3131}}{3131}
The square of \sqrt{3131} is 3131.
\frac{2\sqrt{6922641}}{3131}
To multiply \sqrt{2211} and \sqrt{3131}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}