\sqrt { \frac { 6550,02 } { 182 } }
Evaluate
\frac{3\sqrt{3311399}}{910}\approx 5.999093338
Share
Copied to clipboard
\sqrt{\frac{655002}{18200}}
Expand \frac{6550,02}{182} by multiplying both numerator and the denominator by 100.
\sqrt{\frac{327501}{9100}}
Reduce the fraction \frac{655002}{18200} to lowest terms by extracting and canceling out 2.
\frac{\sqrt{327501}}{\sqrt{9100}}
Rewrite the square root of the division \sqrt{\frac{327501}{9100}} as the division of square roots \frac{\sqrt{327501}}{\sqrt{9100}}.
\frac{3\sqrt{36389}}{\sqrt{9100}}
Factor 327501=3^{2}\times 36389. Rewrite the square root of the product \sqrt{3^{2}\times 36389} as the product of square roots \sqrt{3^{2}}\sqrt{36389}. Take the square root of 3^{2}.
\frac{3\sqrt{36389}}{10\sqrt{91}}
Factor 9100=10^{2}\times 91. Rewrite the square root of the product \sqrt{10^{2}\times 91} as the product of square roots \sqrt{10^{2}}\sqrt{91}. Take the square root of 10^{2}.
\frac{3\sqrt{36389}\sqrt{91}}{10\left(\sqrt{91}\right)^{2}}
Rationalize the denominator of \frac{3\sqrt{36389}}{10\sqrt{91}} by multiplying numerator and denominator by \sqrt{91}.
\frac{3\sqrt{36389}\sqrt{91}}{10\times 91}
The square of \sqrt{91} is 91.
\frac{3\sqrt{3311399}}{10\times 91}
To multiply \sqrt{36389} and \sqrt{91}, multiply the numbers under the square root.
\frac{3\sqrt{3311399}}{910}
Multiply 10 and 91 to get 910.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}