Evaluate
\frac{2\sqrt{141}}{103823}\approx 0.000228742
Share
Copied to clipboard
\sqrt{\frac{384}{94^{5}}}
Multiply 64 and 6 to get 384.
\sqrt{\frac{384}{7339040224}}
Calculate 94 to the power of 5 and get 7339040224.
\sqrt{\frac{12}{229345007}}
Reduce the fraction \frac{384}{7339040224} to lowest terms by extracting and canceling out 32.
\frac{\sqrt{12}}{\sqrt{229345007}}
Rewrite the square root of the division \sqrt{\frac{12}{229345007}} as the division of square roots \frac{\sqrt{12}}{\sqrt{229345007}}.
\frac{2\sqrt{3}}{\sqrt{229345007}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{2\sqrt{3}}{2209\sqrt{47}}
Factor 229345007=2209^{2}\times 47. Rewrite the square root of the product \sqrt{2209^{2}\times 47} as the product of square roots \sqrt{2209^{2}}\sqrt{47}. Take the square root of 2209^{2}.
\frac{2\sqrt{3}\sqrt{47}}{2209\left(\sqrt{47}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{3}}{2209\sqrt{47}} by multiplying numerator and denominator by \sqrt{47}.
\frac{2\sqrt{3}\sqrt{47}}{2209\times 47}
The square of \sqrt{47} is 47.
\frac{2\sqrt{141}}{2209\times 47}
To multiply \sqrt{3} and \sqrt{47}, multiply the numbers under the square root.
\frac{2\sqrt{141}}{103823}
Multiply 2209 and 47 to get 103823.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}