Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{56}}{\sqrt{149}}\times \frac{12}{3}-\left(\frac{3}{5}\right)^{2}
Rewrite the square root of the division \sqrt{\frac{56}{149}} as the division of square roots \frac{\sqrt{56}}{\sqrt{149}}.
\frac{2\sqrt{14}}{\sqrt{149}}\times \frac{12}{3}-\left(\frac{3}{5}\right)^{2}
Factor 56=2^{2}\times 14. Rewrite the square root of the product \sqrt{2^{2}\times 14} as the product of square roots \sqrt{2^{2}}\sqrt{14}. Take the square root of 2^{2}.
\frac{2\sqrt{14}\sqrt{149}}{\left(\sqrt{149}\right)^{2}}\times \frac{12}{3}-\left(\frac{3}{5}\right)^{2}
Rationalize the denominator of \frac{2\sqrt{14}}{\sqrt{149}} by multiplying numerator and denominator by \sqrt{149}.
\frac{2\sqrt{14}\sqrt{149}}{149}\times \frac{12}{3}-\left(\frac{3}{5}\right)^{2}
The square of \sqrt{149} is 149.
\frac{2\sqrt{2086}}{149}\times \frac{12}{3}-\left(\frac{3}{5}\right)^{2}
To multiply \sqrt{14} and \sqrt{149}, multiply the numbers under the square root.
\frac{2\sqrt{2086}}{149}\times 4-\left(\frac{3}{5}\right)^{2}
Divide 12 by 3 to get 4.
\frac{2\sqrt{2086}\times 4}{149}-\left(\frac{3}{5}\right)^{2}
Express \frac{2\sqrt{2086}}{149}\times 4 as a single fraction.
\frac{2\sqrt{2086}\times 4}{149}-\frac{9}{25}
Calculate \frac{3}{5} to the power of 2 and get \frac{9}{25}.
\frac{25\times 2\sqrt{2086}\times 4}{3725}-\frac{9\times 149}{3725}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 149 and 25 is 3725. Multiply \frac{2\sqrt{2086}\times 4}{149} times \frac{25}{25}. Multiply \frac{9}{25} times \frac{149}{149}.
\frac{25\times 2\sqrt{2086}\times 4-9\times 149}{3725}
Since \frac{25\times 2\sqrt{2086}\times 4}{3725} and \frac{9\times 149}{3725} have the same denominator, subtract them by subtracting their numerators.
\frac{200\sqrt{2086}-1341}{3725}
Do the multiplications in 25\times 2\sqrt{2086}\times 4-9\times 149.