Evaluate
\frac{8\sqrt{2086}}{149}-\frac{9}{25}\approx 2.092228134
Factor
\frac{200 \sqrt{2086} - 1341}{3725} = 2.092228133512856
Share
Copied to clipboard
\frac{\sqrt{56}}{\sqrt{149}}\times \frac{12}{3}-\left(\frac{3}{5}\right)^{2}
Rewrite the square root of the division \sqrt{\frac{56}{149}} as the division of square roots \frac{\sqrt{56}}{\sqrt{149}}.
\frac{2\sqrt{14}}{\sqrt{149}}\times \frac{12}{3}-\left(\frac{3}{5}\right)^{2}
Factor 56=2^{2}\times 14. Rewrite the square root of the product \sqrt{2^{2}\times 14} as the product of square roots \sqrt{2^{2}}\sqrt{14}. Take the square root of 2^{2}.
\frac{2\sqrt{14}\sqrt{149}}{\left(\sqrt{149}\right)^{2}}\times \frac{12}{3}-\left(\frac{3}{5}\right)^{2}
Rationalize the denominator of \frac{2\sqrt{14}}{\sqrt{149}} by multiplying numerator and denominator by \sqrt{149}.
\frac{2\sqrt{14}\sqrt{149}}{149}\times \frac{12}{3}-\left(\frac{3}{5}\right)^{2}
The square of \sqrt{149} is 149.
\frac{2\sqrt{2086}}{149}\times \frac{12}{3}-\left(\frac{3}{5}\right)^{2}
To multiply \sqrt{14} and \sqrt{149}, multiply the numbers under the square root.
\frac{2\sqrt{2086}}{149}\times 4-\left(\frac{3}{5}\right)^{2}
Divide 12 by 3 to get 4.
\frac{2\sqrt{2086}\times 4}{149}-\left(\frac{3}{5}\right)^{2}
Express \frac{2\sqrt{2086}}{149}\times 4 as a single fraction.
\frac{2\sqrt{2086}\times 4}{149}-\frac{9}{25}
Calculate \frac{3}{5} to the power of 2 and get \frac{9}{25}.
\frac{25\times 2\sqrt{2086}\times 4}{3725}-\frac{9\times 149}{3725}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 149 and 25 is 3725. Multiply \frac{2\sqrt{2086}\times 4}{149} times \frac{25}{25}. Multiply \frac{9}{25} times \frac{149}{149}.
\frac{25\times 2\sqrt{2086}\times 4-9\times 149}{3725}
Since \frac{25\times 2\sqrt{2086}\times 4}{3725} and \frac{9\times 149}{3725} have the same denominator, subtract them by subtracting their numerators.
\frac{200\sqrt{2086}-1341}{3725}
Do the multiplications in 25\times 2\sqrt{2086}\times 4-9\times 149.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}