Evaluate
-\frac{71\sqrt{2}}{12}\approx -8.367430244
Share
Copied to clipboard
\frac{\sqrt{50}}{\sqrt{9}}+\sqrt{\frac{18}{16}}-5\sqrt{\frac{200}{36}}
Rewrite the square root of the division \sqrt{\frac{50}{9}} as the division of square roots \frac{\sqrt{50}}{\sqrt{9}}.
\frac{5\sqrt{2}}{\sqrt{9}}+\sqrt{\frac{18}{16}}-5\sqrt{\frac{200}{36}}
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
\frac{5\sqrt{2}}{3}+\sqrt{\frac{18}{16}}-5\sqrt{\frac{200}{36}}
Calculate the square root of 9 and get 3.
\frac{5\sqrt{2}}{3}+\sqrt{\frac{9}{8}}-5\sqrt{\frac{200}{36}}
Reduce the fraction \frac{18}{16} to lowest terms by extracting and canceling out 2.
\frac{5\sqrt{2}}{3}+\frac{\sqrt{9}}{\sqrt{8}}-5\sqrt{\frac{200}{36}}
Rewrite the square root of the division \sqrt{\frac{9}{8}} as the division of square roots \frac{\sqrt{9}}{\sqrt{8}}.
\frac{5\sqrt{2}}{3}+\frac{3}{\sqrt{8}}-5\sqrt{\frac{200}{36}}
Calculate the square root of 9 and get 3.
\frac{5\sqrt{2}}{3}+\frac{3}{2\sqrt{2}}-5\sqrt{\frac{200}{36}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{5\sqrt{2}}{3}+\frac{3\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}-5\sqrt{\frac{200}{36}}
Rationalize the denominator of \frac{3}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{5\sqrt{2}}{3}+\frac{3\sqrt{2}}{2\times 2}-5\sqrt{\frac{200}{36}}
The square of \sqrt{2} is 2.
\frac{5\sqrt{2}}{3}+\frac{3\sqrt{2}}{4}-5\sqrt{\frac{200}{36}}
Multiply 2 and 2 to get 4.
\frac{29}{12}\sqrt{2}-5\sqrt{\frac{200}{36}}
Combine \frac{5\sqrt{2}}{3} and \frac{3\sqrt{2}}{4} to get \frac{29}{12}\sqrt{2}.
\frac{29}{12}\sqrt{2}-5\sqrt{\frac{50}{9}}
Reduce the fraction \frac{200}{36} to lowest terms by extracting and canceling out 4.
\frac{29}{12}\sqrt{2}-5\times \frac{\sqrt{50}}{\sqrt{9}}
Rewrite the square root of the division \sqrt{\frac{50}{9}} as the division of square roots \frac{\sqrt{50}}{\sqrt{9}}.
\frac{29}{12}\sqrt{2}-5\times \frac{5\sqrt{2}}{\sqrt{9}}
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
\frac{29}{12}\sqrt{2}-5\times \frac{5\sqrt{2}}{3}
Calculate the square root of 9 and get 3.
\frac{29}{12}\sqrt{2}-\frac{5\times 5\sqrt{2}}{3}
Express 5\times \frac{5\sqrt{2}}{3} as a single fraction.
\frac{29}{12}\sqrt{2}-\frac{25\sqrt{2}}{3}
Multiply 5 and 5 to get 25.
-\frac{71}{12}\sqrt{2}
Combine \frac{29}{12}\sqrt{2} and -\frac{25\sqrt{2}}{3} to get -\frac{71}{12}\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}