Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{50}}{\sqrt{9}}+\sqrt{\frac{18}{16}}-5\sqrt{\frac{200}{36}}
Rewrite the square root of the division \sqrt{\frac{50}{9}} as the division of square roots \frac{\sqrt{50}}{\sqrt{9}}.
\frac{5\sqrt{2}}{\sqrt{9}}+\sqrt{\frac{18}{16}}-5\sqrt{\frac{200}{36}}
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
\frac{5\sqrt{2}}{3}+\sqrt{\frac{18}{16}}-5\sqrt{\frac{200}{36}}
Calculate the square root of 9 and get 3.
\frac{5\sqrt{2}}{3}+\sqrt{\frac{9}{8}}-5\sqrt{\frac{200}{36}}
Reduce the fraction \frac{18}{16} to lowest terms by extracting and canceling out 2.
\frac{5\sqrt{2}}{3}+\frac{\sqrt{9}}{\sqrt{8}}-5\sqrt{\frac{200}{36}}
Rewrite the square root of the division \sqrt{\frac{9}{8}} as the division of square roots \frac{\sqrt{9}}{\sqrt{8}}.
\frac{5\sqrt{2}}{3}+\frac{3}{\sqrt{8}}-5\sqrt{\frac{200}{36}}
Calculate the square root of 9 and get 3.
\frac{5\sqrt{2}}{3}+\frac{3}{2\sqrt{2}}-5\sqrt{\frac{200}{36}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{5\sqrt{2}}{3}+\frac{3\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}-5\sqrt{\frac{200}{36}}
Rationalize the denominator of \frac{3}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{5\sqrt{2}}{3}+\frac{3\sqrt{2}}{2\times 2}-5\sqrt{\frac{200}{36}}
The square of \sqrt{2} is 2.
\frac{5\sqrt{2}}{3}+\frac{3\sqrt{2}}{4}-5\sqrt{\frac{200}{36}}
Multiply 2 and 2 to get 4.
\frac{29}{12}\sqrt{2}-5\sqrt{\frac{200}{36}}
Combine \frac{5\sqrt{2}}{3} and \frac{3\sqrt{2}}{4} to get \frac{29}{12}\sqrt{2}.
\frac{29}{12}\sqrt{2}-5\sqrt{\frac{50}{9}}
Reduce the fraction \frac{200}{36} to lowest terms by extracting and canceling out 4.
\frac{29}{12}\sqrt{2}-5\times \frac{\sqrt{50}}{\sqrt{9}}
Rewrite the square root of the division \sqrt{\frac{50}{9}} as the division of square roots \frac{\sqrt{50}}{\sqrt{9}}.
\frac{29}{12}\sqrt{2}-5\times \frac{5\sqrt{2}}{\sqrt{9}}
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
\frac{29}{12}\sqrt{2}-5\times \frac{5\sqrt{2}}{3}
Calculate the square root of 9 and get 3.
\frac{29}{12}\sqrt{2}-\frac{5\times 5\sqrt{2}}{3}
Express 5\times \frac{5\sqrt{2}}{3} as a single fraction.
\frac{29}{12}\sqrt{2}-\frac{25\sqrt{2}}{3}
Multiply 5 and 5 to get 25.
-\frac{71}{12}\sqrt{2}
Combine \frac{29}{12}\sqrt{2} and -\frac{25\sqrt{2}}{3} to get -\frac{71}{12}\sqrt{2}.