Evaluate
\frac{\sqrt{1441}}{55}\approx 0.690191014
Share
Copied to clipboard
\sqrt{\frac{5.24}{11}}
Subtract 1 from 12 to get 11.
\sqrt{\frac{524}{1100}}
Expand \frac{5.24}{11} by multiplying both numerator and the denominator by 100.
\sqrt{\frac{131}{275}}
Reduce the fraction \frac{524}{1100} to lowest terms by extracting and canceling out 4.
\frac{\sqrt{131}}{\sqrt{275}}
Rewrite the square root of the division \sqrt{\frac{131}{275}} as the division of square roots \frac{\sqrt{131}}{\sqrt{275}}.
\frac{\sqrt{131}}{5\sqrt{11}}
Factor 275=5^{2}\times 11. Rewrite the square root of the product \sqrt{5^{2}\times 11} as the product of square roots \sqrt{5^{2}}\sqrt{11}. Take the square root of 5^{2}.
\frac{\sqrt{131}\sqrt{11}}{5\left(\sqrt{11}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{131}}{5\sqrt{11}} by multiplying numerator and denominator by \sqrt{11}.
\frac{\sqrt{131}\sqrt{11}}{5\times 11}
The square of \sqrt{11} is 11.
\frac{\sqrt{1441}}{5\times 11}
To multiply \sqrt{131} and \sqrt{11}, multiply the numbers under the square root.
\frac{\sqrt{1441}}{55}
Multiply 5 and 11 to get 55.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}