Evaluate
\frac{\sqrt{2}}{2}\approx 0.707106781
Quiz
Arithmetic
5 problems similar to:
\sqrt { \frac { 5 } { 8 } } \div \sqrt { 1 \frac { 1 } { 4 } } =
Share
Copied to clipboard
\frac{\frac{\sqrt{5}}{\sqrt{8}}}{\sqrt{\frac{1\times 4+1}{4}}}
Rewrite the square root of the division \sqrt{\frac{5}{8}} as the division of square roots \frac{\sqrt{5}}{\sqrt{8}}.
\frac{\frac{\sqrt{5}}{2\sqrt{2}}}{\sqrt{\frac{1\times 4+1}{4}}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\frac{\sqrt{5}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}}{\sqrt{\frac{1\times 4+1}{4}}}
Rationalize the denominator of \frac{\sqrt{5}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\frac{\sqrt{5}\sqrt{2}}{2\times 2}}{\sqrt{\frac{1\times 4+1}{4}}}
The square of \sqrt{2} is 2.
\frac{\frac{\sqrt{10}}{2\times 2}}{\sqrt{\frac{1\times 4+1}{4}}}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{\frac{\sqrt{10}}{4}}{\sqrt{\frac{1\times 4+1}{4}}}
Multiply 2 and 2 to get 4.
\frac{\frac{\sqrt{10}}{4}}{\sqrt{\frac{4+1}{4}}}
Multiply 1 and 4 to get 4.
\frac{\frac{\sqrt{10}}{4}}{\sqrt{\frac{5}{4}}}
Add 4 and 1 to get 5.
\frac{\frac{\sqrt{10}}{4}}{\frac{\sqrt{5}}{\sqrt{4}}}
Rewrite the square root of the division \sqrt{\frac{5}{4}} as the division of square roots \frac{\sqrt{5}}{\sqrt{4}}.
\frac{\frac{\sqrt{10}}{4}}{\frac{\sqrt{5}}{2}}
Calculate the square root of 4 and get 2.
\frac{\sqrt{10}\times 2}{4\sqrt{5}}
Divide \frac{\sqrt{10}}{4} by \frac{\sqrt{5}}{2} by multiplying \frac{\sqrt{10}}{4} by the reciprocal of \frac{\sqrt{5}}{2}.
\frac{\sqrt{10}}{2\sqrt{5}}
Cancel out 2 in both numerator and denominator.
\frac{\sqrt{10}\sqrt{5}}{2\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{10}}{2\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{10}\sqrt{5}}{2\times 5}
The square of \sqrt{5} is 5.
\frac{\sqrt{5}\sqrt{2}\sqrt{5}}{2\times 5}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
\frac{5\sqrt{2}}{2\times 5}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{5\sqrt{2}}{10}
Multiply 2 and 5 to get 10.
\frac{1}{2}\sqrt{2}
Divide 5\sqrt{2} by 10 to get \frac{1}{2}\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}