Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{5}}{\sqrt{7}}\sqrt[3]{\frac{343}{125}}
Rewrite the square root of the division \sqrt{\frac{5}{7}} as the division of square roots \frac{\sqrt{5}}{\sqrt{7}}.
\frac{\sqrt{5}\sqrt{7}}{\left(\sqrt{7}\right)^{2}}\sqrt[3]{\frac{343}{125}}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{\sqrt{5}\sqrt{7}}{7}\sqrt[3]{\frac{343}{125}}
The square of \sqrt{7} is 7.
\frac{\sqrt{35}}{7}\sqrt[3]{\frac{343}{125}}
To multiply \sqrt{5} and \sqrt{7}, multiply the numbers under the square root.
\frac{\sqrt{35}}{7}\times \frac{7}{5}
Calculate \sqrt[3]{\frac{343}{125}} and get \frac{7}{5}.
\frac{\sqrt{35}\times 7}{7\times 5}
Multiply \frac{\sqrt{35}}{7} times \frac{7}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{35}}{5}
Cancel out 7 in both numerator and denominator.