Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{5}}{\sqrt{3}}+\sqrt{\frac{5}{12}}
Rewrite the square root of the division \sqrt{\frac{5}{3}} as the division of square roots \frac{\sqrt{5}}{\sqrt{3}}.
\frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\sqrt{\frac{5}{12}}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{5}\sqrt{3}}{3}+\sqrt{\frac{5}{12}}
The square of \sqrt{3} is 3.
\frac{\sqrt{15}}{3}+\sqrt{\frac{5}{12}}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{15}}{3}+\frac{\sqrt{5}}{\sqrt{12}}
Rewrite the square root of the division \sqrt{\frac{5}{12}} as the division of square roots \frac{\sqrt{5}}{\sqrt{12}}.
\frac{\sqrt{15}}{3}+\frac{\sqrt{5}}{2\sqrt{3}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{\sqrt{15}}{3}+\frac{\sqrt{5}\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{5}}{2\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{15}}{3}+\frac{\sqrt{5}\sqrt{3}}{2\times 3}
The square of \sqrt{3} is 3.
\frac{\sqrt{15}}{3}+\frac{\sqrt{15}}{2\times 3}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{15}}{3}+\frac{\sqrt{15}}{6}
Multiply 2 and 3 to get 6.
\frac{1}{2}\sqrt{15}
Combine \frac{\sqrt{15}}{3} and \frac{\sqrt{15}}{6} to get \frac{1}{2}\sqrt{15}.