Evaluate
\frac{8\sqrt{15}}{15}\approx 2.065591118
Share
Copied to clipboard
\frac{\sqrt{5}}{\sqrt{3}}+\sqrt{\frac{3}{5}}
Rewrite the square root of the division \sqrt{\frac{5}{3}} as the division of square roots \frac{\sqrt{5}}{\sqrt{3}}.
\frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\sqrt{\frac{3}{5}}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{5}\sqrt{3}}{3}+\sqrt{\frac{3}{5}}
The square of \sqrt{3} is 3.
\frac{\sqrt{15}}{3}+\sqrt{\frac{3}{5}}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{15}}{3}+\frac{\sqrt{3}}{\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{3}{5}} as the division of square roots \frac{\sqrt{3}}{\sqrt{5}}.
\frac{\sqrt{15}}{3}+\frac{\sqrt{3}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{15}}{3}+\frac{\sqrt{3}\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{\sqrt{15}}{3}+\frac{\sqrt{15}}{5}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{8}{15}\sqrt{15}
Combine \frac{\sqrt{15}}{3} and \frac{\sqrt{15}}{5} to get \frac{8}{15}\sqrt{15}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}