Skip to main content
Evaluate
Tick mark Image

Share

\frac{\sqrt{\frac{5}{2}}}{3}\sqrt{2}\sqrt{14}\left(-5\right)\sqrt{2}
Factor 28=2\times 14. Rewrite the square root of the product \sqrt{2\times 14} as the product of square roots \sqrt{2}\sqrt{14}.
\frac{\sqrt{\frac{5}{2}}}{3}\times 2\left(-5\right)\sqrt{14}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{\frac{\sqrt{5}}{\sqrt{2}}}{3}\times 2\left(-5\right)\sqrt{14}
Rewrite the square root of the division \sqrt{\frac{5}{2}} as the division of square roots \frac{\sqrt{5}}{\sqrt{2}}.
\frac{\frac{\sqrt{5}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}{3}\times 2\left(-5\right)\sqrt{14}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\frac{\sqrt{5}\sqrt{2}}{2}}{3}\times 2\left(-5\right)\sqrt{14}
The square of \sqrt{2} is 2.
\frac{\frac{\sqrt{10}}{2}}{3}\times 2\left(-5\right)\sqrt{14}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{10}}{2\times 3}\times 2\left(-5\right)\sqrt{14}
Express \frac{\frac{\sqrt{10}}{2}}{3} as a single fraction.
\frac{\sqrt{10}}{6}\times 2\left(-5\right)\sqrt{14}
Multiply 2 and 3 to get 6.
\frac{\sqrt{10}}{6}\left(-10\right)\sqrt{14}
Multiply 2 and -5 to get -10.
\frac{-\sqrt{10}\times 10}{6}\sqrt{14}
Express \frac{\sqrt{10}}{6}\left(-10\right) as a single fraction.
\frac{-\sqrt{10}\times 10\sqrt{14}}{6}
Express \frac{-\sqrt{10}\times 10}{6}\sqrt{14} as a single fraction.
\frac{-10\sqrt{10}\sqrt{14}}{6}
Multiply -1 and 10 to get -10.
\frac{-10\sqrt{140}}{6}
To multiply \sqrt{10} and \sqrt{14}, multiply the numbers under the square root.
\frac{-10\times 2\sqrt{35}}{6}
Factor 140=2^{2}\times 35. Rewrite the square root of the product \sqrt{2^{2}\times 35} as the product of square roots \sqrt{2^{2}}\sqrt{35}. Take the square root of 2^{2}.
\frac{-20\sqrt{35}}{6}
Multiply -10 and 2 to get -20.
-\frac{10}{3}\sqrt{35}
Divide -20\sqrt{35} by 6 to get -\frac{10}{3}\sqrt{35}.