Evaluate
\frac{\sqrt{30}}{30}\approx 0.182574186
Share
Copied to clipboard
\sqrt{\frac{2}{15}}\sqrt{\frac{3}{12}}
To multiply \sqrt{\frac{5}{12}} and \sqrt{\frac{8}{25}}, multiply the numbers under the square root.
\frac{\sqrt{2}}{\sqrt{15}}\sqrt{\frac{3}{12}}
Rewrite the square root of the division \sqrt{\frac{2}{15}} as the division of square roots \frac{\sqrt{2}}{\sqrt{15}}.
\frac{\sqrt{2}\sqrt{15}}{\left(\sqrt{15}\right)^{2}}\sqrt{\frac{3}{12}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\frac{\sqrt{2}\sqrt{15}}{15}\sqrt{\frac{3}{12}}
The square of \sqrt{15} is 15.
\frac{\sqrt{30}}{15}\sqrt{\frac{3}{12}}
To multiply \sqrt{2} and \sqrt{15}, multiply the numbers under the square root.
\frac{\sqrt{30}}{15}\sqrt{\frac{1}{4}}
Reduce the fraction \frac{3}{12} to lowest terms by extracting and canceling out 3.
\frac{\sqrt{30}}{15}\times \frac{1}{2}
Rewrite the square root of the division \frac{1}{4} as the division of square roots \frac{\sqrt{1}}{\sqrt{4}}. Take the square root of both numerator and denominator.
\frac{\sqrt{30}}{15\times 2}
Multiply \frac{\sqrt{30}}{15} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{30}}{30}
Multiply 15 and 2 to get 30.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}