Skip to main content
Solve for x
Tick mark Image
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\frac{5}{2}+\frac{1}{2}x-z}=5
Divide each term of 5+x by 2 to get \frac{5}{2}+\frac{1}{2}x.
\frac{1}{2}x+\frac{5}{2}-z=25
Square both sides of the equation.
\frac{1}{2}x+\frac{5}{2}-z-\left(\frac{5}{2}-z\right)=25-\left(\frac{5}{2}-z\right)
Subtract \frac{5}{2}-z from both sides of the equation.
\frac{1}{2}x=25-\left(\frac{5}{2}-z\right)
Subtracting \frac{5}{2}-z from itself leaves 0.
\frac{1}{2}x=z+\frac{45}{2}
Subtract \frac{5}{2}-z from 25.
\frac{\frac{1}{2}x}{\frac{1}{2}}=\frac{z+\frac{45}{2}}{\frac{1}{2}}
Multiply both sides by 2.
x=\frac{z+\frac{45}{2}}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x=2z+45
Divide \frac{45}{2}+z by \frac{1}{2} by multiplying \frac{45}{2}+z by the reciprocal of \frac{1}{2}.
-z+\frac{x+5}{2}=25
Square both sides of the equation.
-z+\frac{x+5}{2}-\frac{x+5}{2}=25-\frac{x+5}{2}
Subtract \frac{5}{2}+\frac{1}{2}x from both sides of the equation.
-z=25-\frac{x+5}{2}
Subtracting \frac{5}{2}+\frac{1}{2}x from itself leaves 0.
-z=\frac{45-x}{2}
Subtract \frac{5}{2}+\frac{1}{2}x from 25.
\frac{-z}{-1}=\frac{45-x}{-2}
Divide both sides by -1.
z=\frac{45-x}{-2}
Dividing by -1 undoes the multiplication by -1.
z=\frac{x-45}{2}
Divide \frac{45-x}{2} by -1.