Solve for x
x=2z+45
Solve for z
z=\frac{x-45}{2}
Share
Copied to clipboard
\sqrt{\frac{5}{2}+\frac{1}{2}x-z}=5
Divide each term of 5+x by 2 to get \frac{5}{2}+\frac{1}{2}x.
\frac{1}{2}x+\frac{5}{2}-z=25
Square both sides of the equation.
\frac{1}{2}x+\frac{5}{2}-z-\left(\frac{5}{2}-z\right)=25-\left(\frac{5}{2}-z\right)
Subtract \frac{5}{2}-z from both sides of the equation.
\frac{1}{2}x=25-\left(\frac{5}{2}-z\right)
Subtracting \frac{5}{2}-z from itself leaves 0.
\frac{1}{2}x=z+\frac{45}{2}
Subtract \frac{5}{2}-z from 25.
\frac{\frac{1}{2}x}{\frac{1}{2}}=\frac{z+\frac{45}{2}}{\frac{1}{2}}
Multiply both sides by 2.
x=\frac{z+\frac{45}{2}}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x=2z+45
Divide \frac{45}{2}+z by \frac{1}{2} by multiplying \frac{45}{2}+z by the reciprocal of \frac{1}{2}.
-z+\frac{x+5}{2}=25
Square both sides of the equation.
-z+\frac{x+5}{2}-\frac{x+5}{2}=25-\frac{x+5}{2}
Subtract \frac{5}{2}+\frac{1}{2}x from both sides of the equation.
-z=25-\frac{x+5}{2}
Subtracting \frac{5}{2}+\frac{1}{2}x from itself leaves 0.
-z=\frac{45-x}{2}
Subtract \frac{5}{2}+\frac{1}{2}x from 25.
\frac{-z}{-1}=\frac{45-x}{-2}
Divide both sides by -1.
z=\frac{45-x}{-2}
Dividing by -1 undoes the multiplication by -1.
z=\frac{x-45}{2}
Divide \frac{45-x}{2} by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}