Evaluate
\frac{26\sqrt{111}}{185}\approx 1.480686473
Share
Copied to clipboard
\sqrt{\frac{49\left(100-64\right)\times 169\times 12}{196\sqrt{81}\sqrt{625}\left(\sqrt{144}+25\right)}}
Divide \frac{49\left(100-64\right)\times 169}{196\sqrt{81}\sqrt{625}} by \frac{\sqrt{144}+25}{12} by multiplying \frac{49\left(100-64\right)\times 169}{196\sqrt{81}\sqrt{625}} by the reciprocal of \frac{\sqrt{144}+25}{12}.
\sqrt{\frac{3\times 169\left(100-64\right)}{\sqrt{81}\sqrt{625}\left(\sqrt{144}+25\right)}}
Cancel out 4\times 49 in both numerator and denominator.
\sqrt{\frac{507\left(100-64\right)}{\sqrt{81}\sqrt{625}\left(\sqrt{144}+25\right)}}
Multiply 3 and 169 to get 507.
\sqrt{\frac{507\times 36}{\sqrt{81}\sqrt{625}\left(\sqrt{144}+25\right)}}
Subtract 64 from 100 to get 36.
\sqrt{\frac{18252}{\sqrt{81}\sqrt{625}\left(\sqrt{144}+25\right)}}
Multiply 507 and 36 to get 18252.
\sqrt{\frac{18252}{9\sqrt{625}\left(\sqrt{144}+25\right)}}
Calculate the square root of 81 and get 9.
\sqrt{\frac{18252}{9\times 25\left(\sqrt{144}+25\right)}}
Calculate the square root of 625 and get 25.
\sqrt{\frac{18252}{225\left(\sqrt{144}+25\right)}}
Multiply 9 and 25 to get 225.
\sqrt{\frac{18252}{225\left(12+25\right)}}
Calculate the square root of 144 and get 12.
\sqrt{\frac{18252}{225\times 37}}
Add 12 and 25 to get 37.
\sqrt{\frac{18252}{8325}}
Multiply 225 and 37 to get 8325.
\sqrt{\frac{2028}{925}}
Reduce the fraction \frac{18252}{8325} to lowest terms by extracting and canceling out 9.
\frac{\sqrt{2028}}{\sqrt{925}}
Rewrite the square root of the division \sqrt{\frac{2028}{925}} as the division of square roots \frac{\sqrt{2028}}{\sqrt{925}}.
\frac{26\sqrt{3}}{\sqrt{925}}
Factor 2028=26^{2}\times 3. Rewrite the square root of the product \sqrt{26^{2}\times 3} as the product of square roots \sqrt{26^{2}}\sqrt{3}. Take the square root of 26^{2}.
\frac{26\sqrt{3}}{5\sqrt{37}}
Factor 925=5^{2}\times 37. Rewrite the square root of the product \sqrt{5^{2}\times 37} as the product of square roots \sqrt{5^{2}}\sqrt{37}. Take the square root of 5^{2}.
\frac{26\sqrt{3}\sqrt{37}}{5\left(\sqrt{37}\right)^{2}}
Rationalize the denominator of \frac{26\sqrt{3}}{5\sqrt{37}} by multiplying numerator and denominator by \sqrt{37}.
\frac{26\sqrt{3}\sqrt{37}}{5\times 37}
The square of \sqrt{37} is 37.
\frac{26\sqrt{111}}{5\times 37}
To multiply \sqrt{3} and \sqrt{37}, multiply the numbers under the square root.
\frac{26\sqrt{111}}{185}
Multiply 5 and 37 to get 185.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}