Evaluate
\frac{20\sqrt{4610}}{1383}\approx 0.981879693
Share
Copied to clipboard
\sqrt{\frac{450}{461}\times \frac{80}{81}}
Reduce the fraction \frac{560}{567} to lowest terms by extracting and canceling out 7.
\sqrt{\frac{450\times 80}{461\times 81}}
Multiply \frac{450}{461} times \frac{80}{81} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{36000}{37341}}
Do the multiplications in the fraction \frac{450\times 80}{461\times 81}.
\sqrt{\frac{4000}{4149}}
Reduce the fraction \frac{36000}{37341} to lowest terms by extracting and canceling out 9.
\frac{\sqrt{4000}}{\sqrt{4149}}
Rewrite the square root of the division \sqrt{\frac{4000}{4149}} as the division of square roots \frac{\sqrt{4000}}{\sqrt{4149}}.
\frac{20\sqrt{10}}{\sqrt{4149}}
Factor 4000=20^{2}\times 10. Rewrite the square root of the product \sqrt{20^{2}\times 10} as the product of square roots \sqrt{20^{2}}\sqrt{10}. Take the square root of 20^{2}.
\frac{20\sqrt{10}}{3\sqrt{461}}
Factor 4149=3^{2}\times 461. Rewrite the square root of the product \sqrt{3^{2}\times 461} as the product of square roots \sqrt{3^{2}}\sqrt{461}. Take the square root of 3^{2}.
\frac{20\sqrt{10}\sqrt{461}}{3\left(\sqrt{461}\right)^{2}}
Rationalize the denominator of \frac{20\sqrt{10}}{3\sqrt{461}} by multiplying numerator and denominator by \sqrt{461}.
\frac{20\sqrt{10}\sqrt{461}}{3\times 461}
The square of \sqrt{461} is 461.
\frac{20\sqrt{4610}}{3\times 461}
To multiply \sqrt{10} and \sqrt{461}, multiply the numbers under the square root.
\frac{20\sqrt{4610}}{1383}
Multiply 3 and 461 to get 1383.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}