Solve for x
x=\frac{3\sqrt{85}}{34\pi }\approx 0.25894166
Graph
Share
Copied to clipboard
\sqrt{\frac{45}{17}}=2\pi x
Expand \frac{4.5}{1.7} by multiplying both numerator and the denominator by 10.
\frac{\sqrt{45}}{\sqrt{17}}=2\pi x
Rewrite the square root of the division \sqrt{\frac{45}{17}} as the division of square roots \frac{\sqrt{45}}{\sqrt{17}}.
\frac{3\sqrt{5}}{\sqrt{17}}=2\pi x
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
\frac{3\sqrt{5}\sqrt{17}}{\left(\sqrt{17}\right)^{2}}=2\pi x
Rationalize the denominator of \frac{3\sqrt{5}}{\sqrt{17}} by multiplying numerator and denominator by \sqrt{17}.
\frac{3\sqrt{5}\sqrt{17}}{17}=2\pi x
The square of \sqrt{17} is 17.
\frac{3\sqrt{85}}{17}=2\pi x
To multiply \sqrt{5} and \sqrt{17}, multiply the numbers under the square root.
2\pi x=\frac{3\sqrt{85}}{17}
Swap sides so that all variable terms are on the left hand side.
34\pi x=3\sqrt{85}
Multiply both sides of the equation by 17.
\frac{34\pi x}{34\pi }=\frac{3\sqrt{85}}{34\pi }
Divide both sides by 34\pi .
x=\frac{3\sqrt{85}}{34\pi }
Dividing by 34\pi undoes the multiplication by 34\pi .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}