Evaluate
\frac{20\sqrt{156758}}{7}\approx 1131.219316869
Share
Copied to clipboard
\sqrt{\frac{13249600+2160^{2}}{14}}
Calculate 3640 to the power of 2 and get 13249600.
\sqrt{\frac{13249600+4665600}{14}}
Calculate 2160 to the power of 2 and get 4665600.
\sqrt{\frac{17915200}{14}}
Add 13249600 and 4665600 to get 17915200.
\sqrt{\frac{8957600}{7}}
Reduce the fraction \frac{17915200}{14} to lowest terms by extracting and canceling out 2.
\frac{\sqrt{8957600}}{\sqrt{7}}
Rewrite the square root of the division \sqrt{\frac{8957600}{7}} as the division of square roots \frac{\sqrt{8957600}}{\sqrt{7}}.
\frac{20\sqrt{22394}}{\sqrt{7}}
Factor 8957600=20^{2}\times 22394. Rewrite the square root of the product \sqrt{20^{2}\times 22394} as the product of square roots \sqrt{20^{2}}\sqrt{22394}. Take the square root of 20^{2}.
\frac{20\sqrt{22394}\sqrt{7}}{\left(\sqrt{7}\right)^{2}}
Rationalize the denominator of \frac{20\sqrt{22394}}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{20\sqrt{22394}\sqrt{7}}{7}
The square of \sqrt{7} is 7.
\frac{20\sqrt{156758}}{7}
To multiply \sqrt{22394} and \sqrt{7}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}