Evaluate
16
Factor
2^{4}
Share
Copied to clipboard
\frac{\sqrt{32}}{\sqrt{3}}\times \frac{\sqrt{\frac{27}{2}}}{\sqrt{\frac{9}{8}}}\sqrt{2}
Rewrite the square root of the division \sqrt{\frac{32}{3}} as the division of square roots \frac{\sqrt{32}}{\sqrt{3}}.
\frac{4\sqrt{2}}{\sqrt{3}}\times \frac{\sqrt{\frac{27}{2}}}{\sqrt{\frac{9}{8}}}\sqrt{2}
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
\frac{4\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\times \frac{\sqrt{\frac{27}{2}}}{\sqrt{\frac{9}{8}}}\sqrt{2}
Rationalize the denominator of \frac{4\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{4\sqrt{2}\sqrt{3}}{3}\times \frac{\sqrt{\frac{27}{2}}}{\sqrt{\frac{9}{8}}}\sqrt{2}
The square of \sqrt{3} is 3.
\frac{4\sqrt{6}}{3}\times \frac{\sqrt{\frac{27}{2}}}{\sqrt{\frac{9}{8}}}\sqrt{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{4\sqrt{6}}{3}\times \frac{\frac{\sqrt{27}}{\sqrt{2}}}{\sqrt{\frac{9}{8}}}\sqrt{2}
Rewrite the square root of the division \sqrt{\frac{27}{2}} as the division of square roots \frac{\sqrt{27}}{\sqrt{2}}.
\frac{4\sqrt{6}}{3}\times \frac{\frac{3\sqrt{3}}{\sqrt{2}}}{\sqrt{\frac{9}{8}}}\sqrt{2}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{4\sqrt{6}}{3}\times \frac{\frac{3\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}{\sqrt{\frac{9}{8}}}\sqrt{2}
Rationalize the denominator of \frac{3\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{4\sqrt{6}}{3}\times \frac{\frac{3\sqrt{3}\sqrt{2}}{2}}{\sqrt{\frac{9}{8}}}\sqrt{2}
The square of \sqrt{2} is 2.
\frac{4\sqrt{6}}{3}\times \frac{\frac{3\sqrt{6}}{2}}{\sqrt{\frac{9}{8}}}\sqrt{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{4\sqrt{6}}{3}\times \frac{\frac{3\sqrt{6}}{2}}{\frac{\sqrt{9}}{\sqrt{8}}}\sqrt{2}
Rewrite the square root of the division \sqrt{\frac{9}{8}} as the division of square roots \frac{\sqrt{9}}{\sqrt{8}}.
\frac{4\sqrt{6}}{3}\times \frac{\frac{3\sqrt{6}}{2}}{\frac{3}{\sqrt{8}}}\sqrt{2}
Calculate the square root of 9 and get 3.
\frac{4\sqrt{6}}{3}\times \frac{\frac{3\sqrt{6}}{2}}{\frac{3}{2\sqrt{2}}}\sqrt{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{4\sqrt{6}}{3}\times \frac{\frac{3\sqrt{6}}{2}}{\frac{3\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}}\sqrt{2}
Rationalize the denominator of \frac{3}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{4\sqrt{6}}{3}\times \frac{\frac{3\sqrt{6}}{2}}{\frac{3\sqrt{2}}{2\times 2}}\sqrt{2}
The square of \sqrt{2} is 2.
\frac{4\sqrt{6}}{3}\times \frac{\frac{3\sqrt{6}}{2}}{\frac{3\sqrt{2}}{4}}\sqrt{2}
Multiply 2 and 2 to get 4.
\frac{4\sqrt{6}}{3}\times \frac{3\sqrt{6}\times 4}{2\times 3\sqrt{2}}\sqrt{2}
Divide \frac{3\sqrt{6}}{2} by \frac{3\sqrt{2}}{4} by multiplying \frac{3\sqrt{6}}{2} by the reciprocal of \frac{3\sqrt{2}}{4}.
\frac{4\sqrt{6}}{3}\times \frac{2\sqrt{6}}{\sqrt{2}}\sqrt{2}
Cancel out 2\times 3 in both numerator and denominator.
\frac{4\sqrt{6}}{3}\times \frac{2\sqrt{6}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\sqrt{2}
Rationalize the denominator of \frac{2\sqrt{6}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{4\sqrt{6}}{3}\times \frac{2\sqrt{6}\sqrt{2}}{2}\sqrt{2}
The square of \sqrt{2} is 2.
\frac{4\sqrt{6}}{3}\times \frac{2\sqrt{2}\sqrt{3}\sqrt{2}}{2}\sqrt{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{4\sqrt{6}}{3}\times \frac{2\times 2\sqrt{3}}{2}\sqrt{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{4\sqrt{6}}{3}\times 2\sqrt{3}\sqrt{2}
Cancel out 2 and 2.
\frac{4\sqrt{6}\times 2}{3}\sqrt{3}\sqrt{2}
Express \frac{4\sqrt{6}}{3}\times 2 as a single fraction.
\frac{4\sqrt{6}\times 2\sqrt{3}}{3}\sqrt{2}
Express \frac{4\sqrt{6}\times 2}{3}\sqrt{3} as a single fraction.
\frac{4\sqrt{6}\times 2\sqrt{3}\sqrt{2}}{3}
Express \frac{4\sqrt{6}\times 2\sqrt{3}}{3}\sqrt{2} as a single fraction.
\frac{4\sqrt{3}\sqrt{2}\times 2\sqrt{3}\sqrt{2}}{3}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{4\times 3\times 2\sqrt{2}\sqrt{2}}{3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{4\times 3\times 2\times 2}{3}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{12\times 2\times 2}{3}
Multiply 4 and 3 to get 12.
\frac{24\times 2}{3}
Multiply 12 and 2 to get 24.
\frac{48}{3}
Multiply 24 and 2 to get 48.
16
Divide 48 by 3 to get 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}