Solve for a
a = \frac{\sqrt{\sqrt{19209} - 3}}{2} \approx 5.822296299
a = -\frac{\sqrt{\sqrt{19209} - 3}}{2} \approx -5.822296299
Share
Copied to clipboard
\left(\sqrt{\frac{3}{4}}a^{2}\right)^{2}=\left(3\times \frac{1}{2}\sqrt{400-\frac{a^{2}}{2}}\right)^{2}
Square both sides of the equation.
\left(\frac{\sqrt{3}}{\sqrt{4}}a^{2}\right)^{2}=\left(3\times \frac{1}{2}\sqrt{400-\frac{a^{2}}{2}}\right)^{2}
Rewrite the square root of the division \sqrt{\frac{3}{4}} as the division of square roots \frac{\sqrt{3}}{\sqrt{4}}.
\left(\frac{\sqrt{3}}{2}a^{2}\right)^{2}=\left(3\times \frac{1}{2}\sqrt{400-\frac{a^{2}}{2}}\right)^{2}
Calculate the square root of 4 and get 2.
\left(\frac{\sqrt{3}a^{2}}{2}\right)^{2}=\left(3\times \frac{1}{2}\sqrt{400-\frac{a^{2}}{2}}\right)^{2}
Express \frac{\sqrt{3}}{2}a^{2} as a single fraction.
\frac{\left(\sqrt{3}a^{2}\right)^{2}}{2^{2}}=\left(3\times \frac{1}{2}\sqrt{400-\frac{a^{2}}{2}}\right)^{2}
To raise \frac{\sqrt{3}a^{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{3}a^{2}\right)^{2}}{2^{2}}=\left(\frac{3}{2}\sqrt{400-\frac{a^{2}}{2}}\right)^{2}
Multiply 3 and \frac{1}{2} to get \frac{3}{2}.
\frac{\left(\sqrt{3}a^{2}\right)^{2}}{2^{2}}=\left(\frac{3}{2}\right)^{2}\left(\sqrt{400-\frac{a^{2}}{2}}\right)^{2}
Expand \left(\frac{3}{2}\sqrt{400-\frac{a^{2}}{2}}\right)^{2}.
\frac{\left(\sqrt{3}a^{2}\right)^{2}}{2^{2}}=\frac{9}{4}\left(\sqrt{400-\frac{a^{2}}{2}}\right)^{2}
Calculate \frac{3}{2} to the power of 2 and get \frac{9}{4}.
\frac{\left(\sqrt{3}a^{2}\right)^{2}}{2^{2}}=\frac{9}{4}\left(400-\frac{a^{2}}{2}\right)
Calculate \sqrt{400-\frac{a^{2}}{2}} to the power of 2 and get 400-\frac{a^{2}}{2}.
\frac{\left(\sqrt{3}a^{2}\right)^{2}}{2^{2}}=900+\frac{9}{4}\left(-\frac{a^{2}}{2}\right)
Use the distributive property to multiply \frac{9}{4} by 400-\frac{a^{2}}{2}.
\frac{\left(\sqrt{3}a^{2}\right)^{2}}{2^{2}}=900+\frac{-9a^{2}}{4\times 2}
Multiply \frac{9}{4} times -\frac{a^{2}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(\sqrt{3}a^{2}\right)^{2}}{2^{2}}=\frac{900\times 4\times 2}{4\times 2}+\frac{-9a^{2}}{4\times 2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 900 times \frac{4\times 2}{4\times 2}.
\frac{\left(\sqrt{3}a^{2}\right)^{2}}{2^{2}}=\frac{900\times 4\times 2-9a^{2}}{4\times 2}
Since \frac{900\times 4\times 2}{4\times 2} and \frac{-9a^{2}}{4\times 2} have the same denominator, add them by adding their numerators.
\frac{\left(\sqrt{3}a^{2}\right)^{2}}{2^{2}}=\frac{7200-9a^{2}}{4\times 2}
Do the multiplications in 900\times 4\times 2-9a^{2}.
\frac{\left(\sqrt{3}a^{2}\right)^{2}}{2^{2}}=\frac{7200-9a^{2}}{8}
Multiply 4 and 2 to get 8.
\frac{\left(\sqrt{3}\right)^{2}\left(a^{2}\right)^{2}}{2^{2}}=\frac{7200-9a^{2}}{8}
Expand \left(\sqrt{3}a^{2}\right)^{2}.
\frac{\left(\sqrt{3}\right)^{2}a^{4}}{2^{2}}=\frac{7200-9a^{2}}{8}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{3a^{4}}{2^{2}}=\frac{7200-9a^{2}}{8}
The square of \sqrt{3} is 3.
\frac{3a^{4}}{4}=\frac{7200-9a^{2}}{8}
Calculate 2 to the power of 2 and get 4.
\frac{3a^{4}}{4}=900-\frac{9}{8}a^{2}
Divide each term of 7200-9a^{2} by 8 to get 900-\frac{9}{8}a^{2}.
2\times 3a^{4}=7200-9a^{2}
Multiply both sides of the equation by 8, the least common multiple of 4,8.
2\times 3a^{4}=-9a^{2}+7200
Reorder the terms.
6a^{4}=-9a^{2}+7200
Multiply 2 and 3 to get 6.
6a^{4}+9a^{2}=7200
Add 9a^{2} to both sides.
6a^{4}+9a^{2}-7200=0
Subtract 7200 from both sides.
6t^{2}+9t-7200=0
Substitute t for a^{2}.
t=\frac{-9±\sqrt{9^{2}-4\times 6\left(-7200\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 6 for a, 9 for b, and -7200 for c in the quadratic formula.
t=\frac{-9±3\sqrt{19209}}{12}
Do the calculations.
t=\frac{\sqrt{19209}-3}{4} t=\frac{-\sqrt{19209}-3}{4}
Solve the equation t=\frac{-9±3\sqrt{19209}}{12} when ± is plus and when ± is minus.
a=\frac{\sqrt{\sqrt{19209}-3}}{2} a=-\frac{\sqrt{\sqrt{19209}-3}}{2}
Since a=t^{2}, the solutions are obtained by evaluating a=±\sqrt{t} for positive t.
\sqrt{\frac{3}{4}}\times \left(\frac{\sqrt{\sqrt{19209}-3}}{2}\right)^{2}=3\times \frac{1}{2}\sqrt{400-\frac{\left(\frac{\sqrt{\sqrt{19209}-3}}{2}\right)^{2}}{2}}
Substitute \frac{\sqrt{\sqrt{19209}-3}}{2} for a in the equation \sqrt{\frac{3}{4}}a^{2}=3\times \frac{1}{2}\sqrt{400-\frac{a^{2}}{2}}.
\frac{3}{8}\times 6403^{\frac{1}{2}}-\frac{3}{8}\times 3^{\frac{1}{2}}=\frac{3}{8}\times 6403^{\frac{1}{2}}-\frac{3}{8}\times 3^{\frac{1}{2}}
Simplify. The value a=\frac{\sqrt{\sqrt{19209}-3}}{2} satisfies the equation.
\sqrt{\frac{3}{4}}\left(-\frac{\sqrt{\sqrt{19209}-3}}{2}\right)^{2}=3\times \frac{1}{2}\sqrt{400-\frac{\left(-\frac{\sqrt{\sqrt{19209}-3}}{2}\right)^{2}}{2}}
Substitute -\frac{\sqrt{\sqrt{19209}-3}}{2} for a in the equation \sqrt{\frac{3}{4}}a^{2}=3\times \frac{1}{2}\sqrt{400-\frac{a^{2}}{2}}.
\frac{3}{8}\times 6403^{\frac{1}{2}}-\frac{3}{8}\times 3^{\frac{1}{2}}=\frac{3}{8}\times 6403^{\frac{1}{2}}-\frac{3}{8}\times 3^{\frac{1}{2}}
Simplify. The value a=-\frac{\sqrt{\sqrt{19209}-3}}{2} satisfies the equation.
a=\frac{\sqrt{\sqrt{19209}-3}}{2} a=-\frac{\sqrt{\sqrt{19209}-3}}{2}
List all solutions of \sqrt{\frac{3}{4}}a^{2}=\frac{3}{2}\sqrt{-\frac{a^{2}}{2}+400}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}