Evaluate
-\frac{3\sqrt{5}}{5}\approx -1.341640786
Share
Copied to clipboard
\frac{\frac{\sqrt{3}}{\sqrt{4}}}{-\frac{1}{2}\sqrt{\frac{3+2}{3}}}
Rewrite the square root of the division \sqrt{\frac{3}{4}} as the division of square roots \frac{\sqrt{3}}{\sqrt{4}}.
\frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}\sqrt{\frac{3+2}{3}}}
Calculate the square root of 4 and get 2.
\frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}\sqrt{\frac{5}{3}}}
Add 3 and 2 to get 5.
\frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}\times \frac{\sqrt{5}}{\sqrt{3}}}
Rewrite the square root of the division \sqrt{\frac{5}{3}} as the division of square roots \frac{\sqrt{5}}{\sqrt{3}}.
\frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}\times \frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}\times \frac{\sqrt{5}\sqrt{3}}{3}}
The square of \sqrt{3} is 3.
\frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}\times \frac{\sqrt{15}}{3}}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{\frac{\sqrt{3}}{2}}{\frac{-\sqrt{15}}{2\times 3}}
Multiply -\frac{1}{2} times \frac{\sqrt{15}}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{3}\times 2\times 3}{2\left(-1\right)\sqrt{15}}
Divide \frac{\sqrt{3}}{2} by \frac{-\sqrt{15}}{2\times 3} by multiplying \frac{\sqrt{3}}{2} by the reciprocal of \frac{-\sqrt{15}}{2\times 3}.
\frac{3\sqrt{3}}{-\sqrt{15}}
Cancel out 2 in both numerator and denominator.
\frac{-3\sqrt{3}}{\sqrt{15}}
Cancel out -1 in both numerator and denominator.
\frac{-3\sqrt{3}\sqrt{15}}{\left(\sqrt{15}\right)^{2}}
Rationalize the denominator of \frac{-3\sqrt{3}}{\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\frac{-3\sqrt{3}\sqrt{15}}{15}
The square of \sqrt{15} is 15.
\frac{-3\sqrt{3}\sqrt{3}\sqrt{5}}{15}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
\frac{-3\times 3\sqrt{5}}{15}
Multiply \sqrt{3} and \sqrt{3} to get 3.
-\frac{1}{5}\times 3\sqrt{5}
Divide -3\times 3\sqrt{5} by 15 to get -\frac{1}{5}\times 3\sqrt{5}.
\frac{-3}{5}\sqrt{5}
Express -\frac{1}{5}\times 3 as a single fraction.
-\frac{3}{5}\sqrt{5}
Fraction \frac{-3}{5} can be rewritten as -\frac{3}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}