Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\frac{3}{4}\left(\frac{7}{15}+\frac{\frac{3}{5}-\left(\frac{1}{5}\right)^{2}-\left(\frac{2}{5}\right)^{3}}{\frac{8}{15}}-\left(\frac{9}{10}\right)^{2}\right)}
Multiply \frac{3}{10} and \frac{2}{3} to get \frac{1}{5}.
\sqrt{\frac{3}{4}\left(\frac{7}{15}+\frac{\frac{3}{5}-\frac{1}{25}-\left(\frac{2}{5}\right)^{3}}{\frac{8}{15}}-\left(\frac{9}{10}\right)^{2}\right)}
Calculate \frac{1}{5} to the power of 2 and get \frac{1}{25}.
\sqrt{\frac{3}{4}\left(\frac{7}{15}+\frac{\frac{14}{25}-\left(\frac{2}{5}\right)^{3}}{\frac{8}{15}}-\left(\frac{9}{10}\right)^{2}\right)}
Subtract \frac{1}{25} from \frac{3}{5} to get \frac{14}{25}.
\sqrt{\frac{3}{4}\left(\frac{7}{15}+\frac{\frac{14}{25}-\frac{8}{125}}{\frac{8}{15}}-\left(\frac{9}{10}\right)^{2}\right)}
Calculate \frac{2}{5} to the power of 3 and get \frac{8}{125}.
\sqrt{\frac{3}{4}\left(\frac{7}{15}+\frac{\frac{62}{125}}{\frac{8}{15}}-\left(\frac{9}{10}\right)^{2}\right)}
Subtract \frac{8}{125} from \frac{14}{25} to get \frac{62}{125}.
\sqrt{\frac{3}{4}\left(\frac{7}{15}+\frac{62}{125}\times \frac{15}{8}-\left(\frac{9}{10}\right)^{2}\right)}
Divide \frac{62}{125} by \frac{8}{15} by multiplying \frac{62}{125} by the reciprocal of \frac{8}{15}.
\sqrt{\frac{3}{4}\left(\frac{7}{15}+\frac{93}{100}-\left(\frac{9}{10}\right)^{2}\right)}
Multiply \frac{62}{125} and \frac{15}{8} to get \frac{93}{100}.
\sqrt{\frac{3}{4}\left(\frac{419}{300}-\left(\frac{9}{10}\right)^{2}\right)}
Add \frac{7}{15} and \frac{93}{100} to get \frac{419}{300}.
\sqrt{\frac{3}{4}\left(\frac{419}{300}-\frac{81}{100}\right)}
Calculate \frac{9}{10} to the power of 2 and get \frac{81}{100}.
\sqrt{\frac{3}{4}\times \frac{44}{75}}
Subtract \frac{81}{100} from \frac{419}{300} to get \frac{44}{75}.
\sqrt{\frac{11}{25}}
Multiply \frac{3}{4} and \frac{44}{75} to get \frac{11}{25}.
\frac{\sqrt{11}}{\sqrt{25}}
Rewrite the square root of the division \sqrt{\frac{11}{25}} as the division of square roots \frac{\sqrt{11}}{\sqrt{25}}.
\frac{\sqrt{11}}{5}
Calculate the square root of 25 and get 5.