Evaluate
\frac{3}{5}=0.6
Factor
\frac{3}{5} = 0.6
Quiz
Arithmetic
5 problems similar to:
\sqrt { \frac { 3 } { 20 } } \times \sqrt { 2 \frac { 2 } { 5 } }
Share
Copied to clipboard
\frac{\sqrt{3}}{\sqrt{20}}\sqrt{\frac{2\times 5+2}{5}}
Rewrite the square root of the division \sqrt{\frac{3}{20}} as the division of square roots \frac{\sqrt{3}}{\sqrt{20}}.
\frac{\sqrt{3}}{2\sqrt{5}}\sqrt{\frac{2\times 5+2}{5}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{\sqrt{3}\sqrt{5}}{2\left(\sqrt{5}\right)^{2}}\sqrt{\frac{2\times 5+2}{5}}
Rationalize the denominator of \frac{\sqrt{3}}{2\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{3}\sqrt{5}}{2\times 5}\sqrt{\frac{2\times 5+2}{5}}
The square of \sqrt{5} is 5.
\frac{\sqrt{15}}{2\times 5}\sqrt{\frac{2\times 5+2}{5}}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{15}}{10}\sqrt{\frac{2\times 5+2}{5}}
Multiply 2 and 5 to get 10.
\frac{\sqrt{15}}{10}\sqrt{\frac{10+2}{5}}
Multiply 2 and 5 to get 10.
\frac{\sqrt{15}}{10}\sqrt{\frac{12}{5}}
Add 10 and 2 to get 12.
\frac{\sqrt{15}}{10}\times \frac{\sqrt{12}}{\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{12}{5}} as the division of square roots \frac{\sqrt{12}}{\sqrt{5}}.
\frac{\sqrt{15}}{10}\times \frac{2\sqrt{3}}{\sqrt{5}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{\sqrt{15}}{10}\times \frac{2\sqrt{3}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{3}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{15}}{10}\times \frac{2\sqrt{3}\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{\sqrt{15}}{10}\times \frac{2\sqrt{15}}{5}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{15}\times 2\sqrt{15}}{10\times 5}
Multiply \frac{\sqrt{15}}{10} times \frac{2\sqrt{15}}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{15}\sqrt{15}}{5\times 5}
Cancel out 2 in both numerator and denominator.
\frac{15}{5\times 5}
Multiply \sqrt{15} and \sqrt{15} to get 15.
\frac{15}{25}
Multiply 5 and 5 to get 25.
\frac{3}{5}
Reduce the fraction \frac{15}{25} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}